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ABSTRACT
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1 Introduction

Many policy makers advocate increasing the quality of teaching, but there is considerable debate

about the best way to measure and improve teacher quality. One prominent method is to evaluate

teachers based on their impacts on their students’test scores, commonly termed the “value-added”

(VA) approach (Hanushek 1971, Murnane 1975, Rockoff 2004, Rivkin, Hanushek, and Kain 2005,

Aaronson, Barrow, and Sander 2007, Kane and Staiger 2008). School districts from Washington

D.C. to Los Angeles have begun to publicize VA measures and use them to evaluate teachers.

Advocates argue that selecting teachers on the basis of their VA can generate substantial gains

in achievement (e.g., Gordon, Kane, and Staiger 2006, Hanushek 2009), while critics contend that

VA measures are poor proxies for teacher quality and should play little if any role in evaluating

teachers (e.g., Baker et al. 2010, Corcoran 2010).

The debate about teacher VA stems primarily from two unanswered questions.1 First, do the

differences in test-score gains across teachers measured by VA capture causal impacts of teachers

or are they driven primarily by student sorting? If students are sorted to teachers in ways that are

not accounted for when estimating value-added, VA estimates will incorrectly reward or penalize

teachers for the mix of students they get. Researchers have reached conflicting conclusions about

the degree of bias in VA (e.g. Kane and Staiger 2008, Rothstein 2010) and there is still disagreement

about this important issue. Second, do teachers who raise test scores improve their students’

outcomes in adulthood or are they simply better at teaching to the test? Recent work has shown

that early childhood education has significant long-term impacts (e.g. Heckman et al. 2010a, 2010b,

2010c, Chetty et al. 2011), but no study has identified the long-term impacts of teacher quality as

measured by value-added.

We address these two questions using information from two administrative databases. The

first is a dataset on test scores and classroom and teacher assignments in grades 3-8 from a large

urban school district in the U.S. These data cover more than 2.5 million students and 18 million

tests for math and English (reading) spanning 1989-2009. The second is selected data from United

States tax records spanning 1996-2010.2 These data contain information on student outcomes

such as earnings, college attendance, and teenage births as well as parent characteristics such as

1There are also other important concerns about VA besides the two we focus on in this paper. For instance,
as with other measures of labor productivity, the signal in value-added measures may be degraded by behavioral
responses if high-stakes incentives are put in place (Barlevy and Neal 2012).

2Tax microdata were not directly used to write the present paper, as all results using tax data are drawn from
tables contained in a Statistics of Income paper on the long-term impacts of tax policy (Chetty, Friedman, and
Rockoff 2011). We describe the details of how the tax data were analyzed here as a reference.



household income, retirement savings, and mother’s age at child’s birth. We match nearly 90% of

the observations in the school district data to the tax data, allowing us to track a large group of

individuals from elementary school to early adulthood.

Our analysis has two parts. In the first part, we develop new tests for bias in VA measures.

We estimate teacher value-added using standard Empirical Bayes methods, conditioning on pre-

determined variables from the school district data such as lagged test scores (Kane and Staiger 2008,

Kane, Rockoff, and Staiger 2008). Our estimates of VA are consistent with prior work: a 1 standard

deviation (SD) improvement in teacher VA raises end-of-grade test scores by approximately 0.1 SD

on average. To evaluate whether these VA estimates are biased by sorting on observables, we use

parent characteristics from the tax data, which are strong predictors of test scores but are omitted

from the VA models. We find that these parent characteristics are uncorrelated with teacher

value-added conditional on the observables used to fit the VA model from the school district data.

In addition, lagged test score gains are essentially uncorrelated with current teacher VA conditional

on observables. We conclude that sorting on observable dimensions generates little or no bias in

standard VA estimates.

To evaluate sorting on unobservables, we develop a quasi-experimental method of testing for

bias in VA estimates that exploits changes in teaching assignments at the school-grade level. For

example, suppose a high-VA 4th grade teacher moves from school s to another school in 1995. If

VA estimates have predictive content, then students entering grade 4 in school s in 1995 should

have lower quality teachers on average and their test score gains should be lower on average than

the previous cohort. In practice, we find sharp breaks in test score gains around such teacher

arrivals and departures at the school-grade-cohort level. Building on this idea, we assess the

degree of bias in VA estimates by testing if observed changes in average test scores across cohorts

match predictions based on the changes in the mean value-added of the teaching staff.3 We

find that the predicted impacts closely match observed impacts: the point estimate of the bias in

forecasted impacts is 2% and statistically insignificant.4 Although it rests on stronger identifying

assumptions than a randomized experiment, our approach of using variation from teacher turnover

3This research design is related to recent studies of teacher turnover (e.g., Rivkin, Hanushek, and Kain 2005,
Jackson and Bruegmann 2010, Ronfeldt et al. 2011), but is the first direct test of whether the VA of teachers who
enter or exit affects mean test scores across cohorts. We discuss how our approach differs from this earlier work in
Section 4.4.

4This quasi-experimental test relies on the assumption that teacher departures and arrivals are not correlated at
a high frequency with student characteristics. We find no evidence of such correlations based on observables such as
lagged test scores or scores in other subjects. This is intuitive, as parents are unlikely to immediately switch their
children to a different school simply because a single teacher leaves or arrives.
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can be implemented in many datasets and yields much more precise estimates of the degree of bias.

Our method requires no data other than school district administrative records, and thus provides

a simple technique for school districts and education researchers to validate their own value-added

models.5

As we discuss in greater detail below, our results reconcile the findings of Kane and Staiger

(2008) and Rothstein (2010) on bias in VA estimates. Rothstein finds minimal bias in VA estimates

due to selection on observables but warns that selection on unobservables could potentially be a

problem because students are sorted to classrooms based on lagged gains. Like Rothstein, we

find minimal selection on observables. We then directly test for selection on unobservables using

an approach analogous to Kane and Staiger (2008), but exploiting quasi-experimental variation

in lieu of a randomized experiment. Like Kane and Staiger, we find no evidence of selection on

unobservables. We therefore conclude that our value-added measures provide unbiased estimates of

teachers’causal impacts on test scores despite the grouping of students on lagged gains documented

by Rothstein.6

In the second part of the paper, we analyze whether high-VA teachers improve their students’

outcomes in adulthood. We structure our analysis using a stylized dynamic model of the education

production function in which cumulative teacher inputs over all grades affect earnings, as in Todd

and Wolpin (2003). We regress outcomes such as earnings for a given set of students on teacher VA

estimated using other cohorts to account for correlated errors in scores and earnings, as in Jacob,

Lefgren, and Sims (2010). The resulting coeffi cients capture the “reduced form”impact of being

assigned a teacher with higher VA in grade g, which includes both the grade g teacher’s direct effect

and any indirect benefits of being tracked to better teachers or receiving better educational inputs

after grade g.

We first pool all grades to estimate the average reduced-form impact of having a better teacher

for a single year from grades 4-8. We find that teacher VA has substantial impacts on a broad range

of outcomes. A 1 SD improvement in teacher VA in a single grade raises the probability of college

attendance at age 20 by 0.5 percentage points, relative to a sample mean of 36%. Improvements

in teacher quality also raise the quality of the colleges that students attend, as measured by the

average earnings of previous graduates of that college. Changes in the quality of the teaching

5STATA code to implement this technique is available at http://obs.rc.fas.harvard.edu/chetty/va_bias_code.zip
6Our findings do not contradict Rothstein’s results; in fact, we replicate them in our own data. However, while

Rothstein concludes that selection on unobservables could potentially generate significant bias, we find that it is
actually negligible based on quasi-experimental tests that provide more definitive estimates of the degree of bias.
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staff across cohorts generate impacts on college attendance and quality of a similar magnitude,

supporting the view that these estimates reflect the causal impact of teachers.

Students who get higher VA teachers have steeper earnings trajectories, with significantly higher

earnings growth rates in their 20s. At age 28, the oldest age at which we have a suffi ciently large

sample size to estimate earnings impacts, a 1 SD increase in teacher quality in a single grade raises

annual earnings by about 1% on average. If this impact on earnings remains constant over the

lifecycle, students would gain approximately $25,000 on average in cumulative lifetime income from

a 1 SD improvement in teacher VA in a single grade; discounting at a 5% rate yields a present value

gain of $4,600 at age 12, the mean age at which the interventions we study occur.

We also find that improvements in teacher quality significantly reduce the probability of having

a child while being a teenager, increase the quality of the neighborhood in which the student lives (as

measured by the percentage of college graduates in that ZIP code) in adulthood, and raise 401(k)

retirement savings rates. The impacts on adult outcomes are all highly statistically significant,

with the null of no impact rejected with p < 0.01.

Under certain strong assumptions about the nature of the tracking process, the net impacts

of teacher VA in grade g can be recovered from the reduced-form coeffi cients by estimating a set

of tracking equations that determine how teacher VA in grade g affects VA in subsequent grades.

Using this approach, we find that the net impacts of teacher VA are significant and large throughout

grades 4-8, showing that improvements in the quality of education can have large returns well

beyond early childhood.7

The impacts of teacher VA are slightly larger for females than males. A given increase in

test scores due to higher teacher quality is worth more in English than math, but the standard

deviation of teacher effects is 50% larger in math than English. The impacts of teacher VA are

roughly constant in percentage terms by parents’income. Hence, high income households, whose

children have higher earnings on average, should be willing to pay larger absolute amounts for

higher teacher VA.

The finding that one’s teachers in childhood have long-lasting impacts may be surprising given

evidence that teachers’impacts on test scores “fade out”very rapidly in subsequent grades (Roth-

stein 2010, Carrell and West 2010, Jacob, Lefgren, and Sims 2010). We confirm this rapid fade-out

in our data, but find that test score impacts stabilize at about 1/3 the original impact after 3

7Because we can only analyze the impacts of teacher quality from grades 4-8, we cannot quantify the returns to
education at earlier ages. The returns to better education in pre-school or earlier may be much larger than those
estimated here (Heckman 2000).
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years, showing that some of the achievement gains persist. Despite the fade-out of impacts on

scores, the impacts of better teaching on earnings are similar to what one would predict based on

the cross-sectional correlation between earnings and contemporaneous test score gains conditional

on observables. This pattern of fade-out and re-emergence echoes the findings of recent studies of

early childhood interventions (Heckman et al. 2010c, Deming 2009, Chetty et al. 2011).

To illustrate the magnitude of teachers’impacts, we use our estimates to evaluate the gains from

selecting teachers based on their estimated VA. We begin by evaluating Hanushek’s (2009) proposal

to deselect the bottom 5% of teachers based on their value-added. We estimate that replacing a

teacher whose true VA is in the bottom 5 percent with an average teacher would increase the present

value of students’ lifetime income by $267,000 per classroom taught.8 However, because VA is

estimated with noise, the gains from deselecting teachers based on a limited number of classrooms

are smaller. We estimate the present value gains from deselecting the bottom 5% of teachers to

be approximately $135,000 based on one year of data and $190,000 based on three years of data.

We then evaluate the expected gains from policies that pay bonuses to high-VA teachers in

order to increase retention rates. The gains from such policies appear to be only modestly larger

than their costs. Although the present value benefit from retaining a teacher whose estimated VA

is at the 95th percentile after three years is nearly $200,000 per year, most bonus payments end up

going to high-VA teachers who would have stayed even without the additional payment (Clotfelter

et al. 2008). Replacing low VA teachers may therefore be a more cost effective strategy to increase

teacher quality in the short run than paying bonuses to retain high-VA teachers. In the long

run, higher salaries could attract more high VA teachers to the teaching profession, a potentially

important benefit that we do not measure here.9

It is important to keep two caveats in mind when evaluating the policy implications of our

findings. First, teachers were not incentivized based on test scores in the school district and time

period we study. The signal content of value-added might be lower when it is used to evaluate

teachers because of behavioral responses such as cheating or teaching to the test (Jacob and Levitt

2003, Jacob 2005, Neal and Schanzenbach 2010). Our results quantify the gains from higher

VA teachers in an environment without such distortions in teacher behavior.10 Further work is
8This calculation discounts the earnings gains at a rate of 5% to age 12. The total undiscounted earnings gains

from this policy are $52,000 per child and more than $1.4 milllion for the average classroom.
9 Increasing salaries or paying bonuses based on VA could also result in gains to students via changes in teacher

effort in the short run. However, a recent experimental study from the U.S. found no significant impacts of this type
of incentive program (Springer et al. 2010).
10Even in our sample, we find that the top 2% of teachers ranked by VA have patterns of test score gains that are

consistent with test manipulation based on the proxy developed by Jacob and Levitt (2003). Correspondingly, these
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needed to determine how VA should be used for education policy in a high stakes environment with

multitasking and imperfect monitoring (Holmstrom and Milgrom 1991, Barlevy and Neal 2012).

Second, our analysis does not compare value-added with other measures of teacher quality. It

is quite plausible that aspects of teacher quality which are not captured by standardized tests have

significant long-term impacts. This raises the possibility that other measures of teacher quality

(e.g., evaluations based on classroom observation) might be even better predictors of teachers’

long-term impacts than value-added scores, though the signal content of these measures in a high

stakes environment could also be degraded by behavioral distortions. Further work comparing the

long-term impacts of teachers rated on various metrics is needed to determine the optimal method

of teacher evaluation. What is clear from this study is that improving teacher quality is likely to

yield substantial returns for students; the best way to accomplish that goal is less clear.

The paper is organized as follows. In Section 2, we present a statistical model to formalize the

questions we seek to answer and derive estimating equations for our empirical analysis. Section 3

describes the data sources and provides summary statistics as well as cross-sectional correlations

between scores and adult outcomes as a benchmark. Section 4 discusses the results of our tests

for bias in VA measures. Results on teachers’long-term impacts are given in section 5. Section 6

presents policy calculations and Section 7 concludes.

2 Conceptual Framework

We structure our analysis using a stylized dynamic model of the education production function

based on previous work (Todd and Wolpin 2003, Cunha and Heckman 2010, Cunha, Heckman,

and Schennach 2010). The purpose of the model is to formalize the identification assumptions

underlying our empirical analysis and clarify how the reduced-form parameters we estimate should

be interpreted. We therefore focus exclusively on the role of teachers, abstracting from other inputs

to the education production function, such as peers or parental investment. Using this model, we

(1) define a set of reduced-form treatment effects, (2) present the assumptions under which we can

identify these treatment effects, and (3) derive estimating equations for these parameters.

2.1 Structural Model of Student Outcomes

Our model is characterized by three relationships: a specification for test scores, a specification

for earnings (or other adult outcomes), and a rule that governs student and teacher assignment to

high VA outlier teachers also have much smaller long-term impacts than one would predict based on their VA.
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classrooms. School principals first assign student i in grade g to a classroom c(i, g) based on lagged

test scores, prior inputs, and other unobserved determinants of student achievement. Principals

then assign a teacher j to each classroom c based on classroom characteristics such as mean lagged

scores and class demographics. Let j(i, g) = j(c(i, g)) denote student i’s teacher in grade g. Let

ej denote teacher j’s years of teaching experience.

Student i’s test score in grade g, Aig, is a function of current and prior inputs:

(1) Aig =

g∑
s=1

σsgµj(i,s) + λc(i,g) + ηi + ζig

where µj(i,g) represents the impact of teacher j on test scores, which we term the teacher’s “value-

added.” We scale teacher quality so that the average teacher has quality µj = 0 and the effect of

teacher quality in grade g on scores in grade g is σgg = 1. For s < g, σsg measures the persistent

impact of teacher quality µ in grade s on test scores at the end of grade g. λc(i,g) represents

an exogenous transitory classroom-level shock, ηi represents academic ability, and ζig represents

idiosyncratic noise and other period-specific innovations in individual achievement.

The model for scores in (1) makes two substantive restrictions that are standard in the value-

added literature. First, it assumes that teacher quality µj is fixed over time, except for the effects

of teacher experience, which we model in our empirical specifications. This rules out the possibility

that teacher quality fluctuates across years (independent of experience) or that it depends upon

the characteristics of the students assigned to the teacher (e.g., high vs low achieving students).11

Second, our model does not explicitly account for endogenous responses of other inputs such as

parental effort in response to changes in teacher quality. We discuss the consequences of these

assumptions for our results below.

Earnings Yi are a function of the inputs over all G grades:

(2) Yi =
G∑
g=1

γgτ
Y
j(i,g) + ηYi

where τYj(i,g) represents teacher j’s impact on earnings, γg measures the effect of teacher quality

in grade g on earnings and ηYi reflects individual heterogeneity in earnings ability, which may be

correlated with academic ability ηi. This specification assumes that the transitory classroom and

individual-level shocks that affect scores have no impact on earnings, a simplification that has no

effect on the results below.
11One could reinterpret λ in equation 1 as a class-specific component of teacher quality. In that case, the methods

we implement below would estimate the component of teacher quality that is constant across years.
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2.2 Identifying Teachers’Impacts on Scores

Our first goal is to identify the causal impacts of changing the teacher of class c from teacher j to j′

in grade g on test scores and earnings. Define the potential outcome Aig(j′) as the test score student

i would have in grade g if his teacher were j(i, g) = j′. With the normalization σgg = 1, the causal

effect of replacing teacher j with j′ on student i’s end-of-year score is simply Aig(j′) − Aig(j) =

µj′ − µj . In our stylized model, the treatment effect Aig(j′)−Aig(j) coincides with the structural

impact of teachers on scores. In a more general model with endogenous parent inputs and peer

quality, this reduced-form treatment effect combines various structural parameters. For instance,

students assigned to a better teacher may get less help on their homework from parents. Though it

is not a policy-invariant primitive parameter, the reduced-form parameter µj is of direct relevance

to certain questions, such as the impacts of retaining teachers on the basis of their VA (Todd and

Wolpin 2003).

To estimate µj , we begin by estimating the following empirical model for student i’s test score

in grade g in school year t:

Aigt = f1g(Ai,t−1) + f2(ej(i,g,t)) + φ1Xigt + φ2X̄c(i,g,t) + νigt(3)

where νigt = µj(i,g,t) + θc(i,g,t) + εigt

Here f1g(Ai,t−1) is a control function for individual test scores in year t − 1, f2(ej(i,g,t)) controls

for the impacts of teacher experience, Xigt is a vector of student characteristics (such as whether

the student is a native English speaker), and X̄c(i,g,t) is a vector of classroom-level characteristics

determined before teacher assignment (such as class size or an indicator for being an honors class).

We decompose the error term in the empirical model into three components: teacher quality (µj),

class shocks (θc(i,g,t)), and idiosyncratic shocks (εigt). We can distinguish teacher effects µj from

class shocks θc(i,g,t) by observing teachers over many school years.12 Note that because we control

for the effects of teacher experience in (3), µj represents the variation in teacher quality that is

independent of experience.13

The empirical model for test scores in (3) differs from the structural model in (1) because we

cannot observe all the terms in (1), such as heterogeneity in individual ability (ηi and ζig). Value-

12This is the key distinction between our paper and Chetty et al.’s (2011) analysis of the long term impacts of
Project STAR using tax data. Chetty et al. observe each teacher in only one classroom and therefore cannot separate
teacher and class effects.
13To simplify notation, we assume that teachers teach one class per year (as in elementary schools). Because the

j and c subscripts become redundant, we drop the c subscript. When teachers are assigned more than one class per
year, we treat each class as if it were in a separate year for the purposes of the derivation below.
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added models address this problem by controlling for prior-year test scores, which in principle

should capture much of the variance in ability because ηi is a component of previous test scores.

With these controls, the idiosyncratic error term in the empirical model εigt reflects unobserved

student-level heterogeneity in test scores arising from the components of the structural model in

(1) that are orthogonal to lagged scores and other observable characteristics. The class-level error

term θc(i,g,t) reflects analogous unobserved class-level heterogeneity.

There are various methods one could use to estimate µj and the other error components in (3),

such as estimating a correlated random effects model, a hierarchical linear model, or implementing

an Empirical Bayes procedure. All of these methods rely on the following identification assumption

to obtain consistent estimates of µj .

Assumption 1 Students are not sorted to teachers on unobservable determinants of test scores:

E
[
θc(i,g,t) + εigt|j

]
= E

[
θc(i,g,t) + εigt

]
Assumption 1 requires that each teacher is no more likely than other teachers to be assigned students

who score highly, conditional on the controls in the empirical model (3). If this assumption fails,

the estimated teacher effects µ̂j will pick up differences in unobserved student characteristics across

teachers and not the causal impacts of the teachers themselves. Note that Assumption 1 is not

inconsistent with some parents sorting their children to particular teachers. Assumption 1 only

requires that the observable characteristics
{
Ai,t−1, Xigt, X̄c(i,g,t)

}
are suffi ciently rich so that any

remaining unobserved heterogeneity in test scores is balanced across teachers.14 The first half of

our empirical analysis focuses on assessing whether this is the case using two tests that we describe

in Section 4.

Empirical Implementation. We estimate µj using an Empirical Bayes procedure following

Morris (1983) and Kane and Staiger (2008, pp 14-16), which is the most commonly used approach

to estimate VA (McCaffrey et al. 2003). We use this approach because of its computational

simplicity and because our primary goal is to evaluate the properties of existing VA measures

rather than devise new measures. Our procedure for estimating µj consists of three steps, which

we implement separately for math and English observations:

Step 1: Calculate residual test score gains. We estimate (3) using OLS and compute residuals

of student test scores, ν̂igt. We then estimate the variances of the error components σ2
µ, σ

2
θ, and

14For example, suppose motivated parents are able to get their children better teachers. These children would
presumably also have had higher test scores in the previous grade. Hence, conditional on prior test scores, the
remaining variation in current test scores could be balanced across teachers despite unconditional sorting.
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σ2
ε using equations (2)-(4) in Kane and Staiger (2008). Intuitively, the within-classroom variance

identifies σ2
ε, the within-teacher cross-classroom covariance identifies σ

2
µ, and the remaining variance

is due to σ2
θ.

Step 2: Calculate average teacher effects. Let νjt denote the mean score residual for the class-

room taught by teacher j in year t and njt the number of students in that class. We estimate each

teacher’s quality using a precision-weighted average of νjt across the classes taught by teacher j:

ν̄j =
∑
t

hjtν̄jt/
∑
t

hjt

where hjt = 1/(σ̂2
θ + σ̂2

ε/njt) denotes is the inverse of the variance of the estimate of teacher quality

obtained from class t.

Step 3: Shrink teacher effect estimates. Finally, we shrink the mean test score impact νj toward

the sample mean (0) to obtain an estimate of the teacher’s quality:

(4) µ̂j = νj
σ̂2
µ

σ̂2
µ + 1/

∑
t
hjt

= νj · r

where r ≡ V ar(µj)

V ar(νj)
is commonly termed the “reliability”of the VA estimate.

To understand the purpose of the shrinkage correction, consider an experiment in which we

estimate teacher impacts νj in year t and then randomly assign students to teachers in year t+ 1.

The best (mean-squared error minimizing) linear predictor of student’s test scores Aig,t+1 based

on ν̄j is obtained from the OLS regression Aig,t+1 = a + bν̄j . The coeffi cients in this regression

are a = 0 and b =
cov(Aig,t+1,ν̄j)

var(νj)
=

V ar(µj)

V ar(νj)
= r, implying that the optimal forecast of teacher j’s

impact on future scores is µ̂j = νj · r. From a frequentist perspective, the measurement error

in νj makes it optimal to used a biased but more precise estimate of teacher quality to minimize

the mean-squared error of the forecast. From a Bayesian perspective, the posterior mean of the

distribution of µj with Normal errors is a precision-weighted average of the sample mean (νj) and

the mean of the prior (0), which is Eµj |νj = νj · r = µ̂j . Because of these reasons, we follow the

literature and use µ̂j as our primary measure of teacher quality in our empirical analysis. As a

robustness check, we replicate our main results using mean test score residuals (ν̄j) and show that,

as expected, the estimated impacts are attenuated by roughly the mean of the shrinkage factor r.
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2.3 Identifying Teachers’Impacts on Earnings

The impact of changing the teacher of class c from j to j′ in grade g on mean earnings is:

µYj − µYj′ = EYi(j(i, g))− EYi(j′(i, g))(5)

= γg

(
τYj′(i,g) − τ

Y
j(i,g)

)
+

G∑
s=g+1

γs

(
EτYj(i,s)|j′(i,g) − Eτ

Y
j(i,s)|j(i,g)

)
.(6)

Replacing teacher j affects earnings through two channels. The first term in (5) represents the

direct impact of the change in teachers on earnings. The second term represents the indirect

impact via changes in the expected quality of subsequent teachers to which the student is assigned.

For example, a higher achieving student may be tracked into a more advanced sequence of classes

taught by higher quality teachers. In a more general model, other determinants of earnings such

as parental effort or peer quality might also respond endogenously to the change in teachers.

In principle, one could estimate teacher j’s reduced-form causal impact on earnings, µYj , using

an empirical model analogous to the one used above for test scores:

Yi = fY1g(Ai,t−1) + fY2 (ej(i,g,t)) + φY1 Xigt + φY2 X̄c(i,g,t) + νYigt(7)

νYigt = µYj(i,g,t) + θYc(i,g,t) + εYigt

Teacher impacts on earnings µYj can be identified under an assumption about sorting analogous to

Assumption 1:

(8) E
[
θYc(i,g,t) + εYigt | j

]
= E

[
θYc(i,g,t) + εYigt

]
This condition, although similar to Assumption 1, is a much stronger requirement in practice.

Assumption 1 holds if εigt is balanced across teachers, which requires that ηi is orthogonal to

Aigt conditional on lagged test scores and other observables. The condition in (8) holds if εYijt

is balanced across teachers, which requires ηYi to be orthogonal to Yi conditional on lagged test

scores and other observables. Because ηi appears directly in Ai,t−1, it is likely to be absorbed

by controlling for lagged scores. In contrast, ηYi does not appear in lagged scores and hence is

unlikely to be absorbed by these controls. If we observed an analog of lagged scores such as lagged

expected earnings, we could effectively control for ηYi and more plausibly satisfy (8).

As a concrete example, suppose that students have heterogeneous levels of ability, which affects

scores and earnings, and family connections, which only affect earnings. Students are sorted to
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teachers on the basis of both of these characteristics. While ability is picked up by lagged test

scores and thus eliminated from εigt, family connections are not absorbed by the controls and

appear in εYigt. As a result, teachers’impacts on scores can be consistently estimated, but their

impacts on earnings cannot because there is systematic variation across teachers in their students’

earnings due purely to connections.

In practice, we are unable to account for ηYi fully: tests for sorting on pre-determined char-

acteristics analogous to those in Section 4.1 reveal that (8) is violated in our data. Therefore,

we cannot identify teachers’total impacts on earnings µYj despite being able to identify teachers’

impacts on test scores. Given this constraint, we pursue a less ambitious objective: estimating

the correlation between teachers’impacts on scores and earnings, cov(µj , µ
Y
j ). This yields a lower

bound on teacher effects on earnings µYj , as the standard deviation of µ
Y
j is bounded below by

βgσµ, which measures the portion of var(µ
Y
j ) due to cov(µj , µ

Y
j ).

To see how we can identify cov(µj , µ
Y
j ), consider the following empirical model for earnings as

a function of teacher VA for student i in grade g in year t:

(9) Yi = βgµ̂j(i,g) + fµ1g(Ai,t−1) + fµ2 (ej(i,g,t)) + φµ1Xigt + φµ2 X̄c(i,g,t) + εµigt.

The coeffi cient βg in this equation represents the mean increase in student earnings from a one

unit increase in teacher VA in grade g, as measured using the Empirical Bayes procedure described

above. Estimating (9) using OLS yields an unbiased estimate of βg under the following assumption.

Assumption 2 Teacher value-added is orthogonal to unobserved determinants of earnings:

cov
(
µ̂j , ε

µ
igt

)
= 0.

Assumption 2 is weaker than (8) because it only requires that there be no correlation between

teacher value-added and unobservables.15 In our example above, it allows students with better

family connections ηYi to be systematically tracked to certain teachers as long as those teachers

do not systematically have higher levels of value-added on test scores, conditional on the controls{
Ai,t−1, ej(i,g,t), Xigt, X̄c(i,g,t)

}
. While this remains a strong assumption, it may hold in practice

because teacher VA was not publicized during the period we study and VA is very diffi cult to predict

based on teacher observables. We evaluate whether conditioning on observables is adequate to

15Assumption 2 would be violated if the same observations were used to estimate µ̂j and β because the estimation
errors in (3) and (9) are correlated. Students with unobservably high test scores ηi are also likely to have unobservably
high earnings ηYi . We deal with this technical problem by using a leave-out mean to estimate µ̂j as described in
Section 4.
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satisfy Assumption 2 using quasi-experimental techniques in Section 5.

The coeffi cient βg in (9) represents the reduced-form impact of having a higher VA teacher in

grade g and includes the impacts of subsequent endogenous treatments such as better teachers in

later grades. While this reduced-form impact is of interest to parents, one may also be interested

in identifying the impact of each teacher net of potential tracking to better teachers in later grades.

Let β̃g denote the impact of teacher VA in grade g on earnings holding fixed teacher VA in subse-

quent grades. One intuitive specification to identify β̃g is to regress earnings on teacher VA in all

grades simultaneously:

(10) Yi =
G∑
g=1

β̃gµ̂j(i,g) + εµi .

Identifying
{
β̃g

}
in (10) requires the orthogonality condition Cov

(
µ̂j(i,g), ε

µ
i

)
= 0. As we discussed

above, this assumption does not hold unconditionally because students are assigned to teachers in

grade g based on grade g − 1 test scores Ai,g−1. Because we must condition on Ai,g−1 in order to

obtain variation in grade g teacher VA µ̂j(i,g) that is orthogonal to student characteristics, we cannot

directly estimate (10), as Ai,g−1 is endogenous to grade g − 1 teacher VA µ̂j(i,g−1).
16 Instead, we

develop a simple iterative method of recovering the net impacts β̃g from our reduced form estimates

βg and estimates of the degree of teacher tracking in Section 6.1.

3 Data

We draw information from two databases: administrative school district records and information

on these students and their parents from U.S. tax records. We first describe the two data sources

and then the structure of the linked analysis dataset. Finally, we provide descriptive statistics and

cross-sectional correlations using the analysis dataset.

3.1 School District Data

We obtain information on students, including enrollment history, test scores, and teacher assign-

ments from the administrative records of a large urban school district. These data span the school

years 1988-1989 through 2008-2009 and cover roughly 2.5 million children in grades 3-8. For sim-

plicity, we refer below to school years by the year in which the spring term occurs (e.g., the school

16For the same reason, we also cannot estimate the complementarity of teachers across grades. Estimating
complementarity requires simultaneous quasi-random assignment of teachers in both grades g and g − 1, but we are
only able to isolate quasi-random variation one grade at a time with our research design.
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year 1988-89 is 1989).

Test Scores. The data include approximately 18 million test scores. Test scores are available

for English language arts and math for students in grades 3-8 in every year from the spring of 1989

to 2009, with the exception of 7th grade English scores in 2002.17 In the early and mid 1990s, all

tests were specific to the district. Starting at the end of the 1990s, the tests in grades 4 and 8 were

administered as part of a statewide testing system, and all tests in grades 3-8 became statewide

in 2006 as required under the No Child Left Behind law.18 Because of this variation in testing

regimes, we follow prior work on measuring teachers’effects on student achievement, taking the

offi cial scale scores from each exam and normalizing the mean to zero and the standard deviation

to one by year and grade. The within-grade variation in achievement in the district we examine

is comparable to the within-grade variation nationwide, so our results can easily be compared to

estimates from other samples.19

Demographics. The dataset contains information on ethnicity, gender, age, receipt of special

education services, and limited English proficiency for the school years 1989 through 2009. The

database used to code special education services and limited English proficiency changed in 1999,

creating a break in these series that we account for in our analysis by interacting these two measures

with a post-1999 indicator. Information on free and reduced price lunch is available starting in

school year 1999.

Teachers. The dataset links students in grades 3-8 to classrooms and teachers from 1991

through 2009.20 This information is derived from a data management system which was phased

in over the early 1990s, so not all schools are included in the first few years of our sample. In

addition, data on course teachers for middle and junior high school students– who, unlike students

in elementary schools, are assigned different teachers for math and English– are more limited.

17We also have data on math and English test scores in grade 2 from 1991-1994 and English test scores in grades
9-10 from 1991-1993, which we use only when estimating teachers’impacts on past and future test scores. Because
these observations are a very small fraction of our analysis sample, excluding them has little impact on the placebo
tests and fade-out estimates reported in Figure 2.
18All tests were administered in late April or May during the early-mid 1990s, and students were typically tested

in all grades on the same day throughout the district. Statewide testing dates varied to a greater extent, and were
sometimes given earlier in the school year (e.g., February) during the latter years of our data.
19The standard deviation of 4th and 8th grade English and math achievement in this district ranges from roughly

95 percent to 105 percent of the national standard deviation on the National Assessment of Educational Progress,
based on data from 2003 and 2009, the earliest and most recent years for which NAEP data are available. Mean
scores are significantly lower than the national average, as expected given the urban setting of the district.
205% of students switch classrooms or schools in the middle of a school year. We assign these students to the

classrooms in which they took the test to obtain an analysis dataset with one observation per student-year-subject.
However, when defining class and school-level means of student characteristics (such as fraction eligible for free lunch),
we account for such switching by weighting students by the fraction of the year they spent in that class or school.
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Course teacher data are unavailable prior to the school year 1994, then grow in coverage to roughly

60% by school year 1998 and 85% by 2003. Even in the most recent years of the data, roughly

15 percent of the district’s students in grades 6 to 8 are not linked to math and English teachers

because some middle and junior high schools still do not report course teacher data.

The missing teacher links raise two potential concerns. First, our estimates (especially for

grades 6-8) apply to a subset of schools with more complete information reporting systems and

thus may not be representative of the district as a whole. Reassuringly, we find that these schools

do not differ significantly from the sample as a whole on test scores and other observables. Second,

and more importantly, missing data could generate biased estimates. Almost all variation in

missing data occurs at the school level because data availability is determined by whether the

school utilizes in the district’s centralized data management system for tracking course enrollment

and teacher assignment. Specifications that exploit purely within-school comparisons are therefore

essentially unaffected by missing data and we show that our results are robust to exploiting such

variation. Moreover, we obtain similar results for the subset of years when we have complete data

coverage in grades 3-5, confirming that missing data does not drive our results.

We obtain information on teacher experience from human resource records. The human resource

records track teachers since they started working in the district and hence give us an uncensored

measure of within-district experience for the teachers in our sample. However, we lack information

on teaching experience outside of the school district.

Sample Restrictions. Starting from the raw dataset, we make a series of sample restrictions

that parallel those in prior work to obtain our primary school district sample. First, because our

estimates of teacher value-added always condition on prior test scores, we restrict our sample to

grades 4-8, where prior test scores are available. Second, we drop the 2% of observations where the

student is listed as receiving instruction at home, in a hospital, or in a school serving solely disabled

students. We also exclude the 6% of observations in classrooms where more than 25 percent of

students are receiving special education services, as these classrooms may be taught by multiple

teachers or have other special teaching arrangements. Third, we drop classrooms with less than

10 students or more than 50 students as well as teachers linked with more than 200 students in a

single grade, because such students are likely to be mis-linked to classrooms or teachers (0.5% of

observations). Finally, when a teacher is linked to students in multiple schools during the same

year, which occurs for 0.3% of observations, we use only the links for the school where the teacher is

listed as working according to human resources records and set the teacher as missing in the other
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schools. After these restrictions, we are left with 15.0 million student-year-subject observations.

Of these, 9.1 million records have information on teacher and 7.7 million have information on both

teachers and test score gains, which we need to estimate value-added.

3.2 Tax Data

In Chetty, Friedman, and Rockoff (2011), we obtain data on students’adult outcomes and their

parents’characteristics from income tax returns. Here, we briefly summarize some key features of

the variables used in the analysis below. The year always refers to the tax year (i.e., the calendar

year in which the income is earned or the college expense incurred). In most cases, tax returns

for tax year t are filed during the calendar year t + 1. We express all monetary variables in 2010

dollars, adjusting for inflation using the Consumer Price Index.

Earnings. Individual earnings data come from W-2 forms, which are available from 1999-2010.

W-2 data are available for both tax filers and non-filers, eliminating concerns about missing data.

Individuals with no W-2 are coded as having 0 earnings.21 We cap earnings in each year at $100,000

to reduce the influence of outliers; 1.2% of individuals in the sample report earnings above $100,000

at age 28.

College Attendance. We define college attendance as an indicator for having one or more

1098-T forms filed on one’s behalf. Title IV institutions —all colleges and universities as well as

vocational schools and other postsecondary institutions — are required to file 1098-T forms that

report tuition payments or scholarships received for every student. Because the 1098-T forms are

filed directly by colleges, missing data concerns are minimal.22 Comparisons to other data sources

indicate that 1098-T forms accurately capture US college enrollment.23 We have no information

about college completion or degree attainment because the data are based on tuition payments.

The 1098-T data are available from 1999-2009.

College Quality. We construct an earnings-based index of college quality as in Chetty et al.

(2011). Using the full population of all individuals in the United States aged 20 on 12/31/1999

21We obtain similar results using household adjusted gross income reported on individual tax returns. We focus on
the W-2 measure because it provides a consistent definition of individual wage earnings for both filers and non-filers.
One limitation of the W-2 measure is that it does not include self-employment income.
22Colleges are not required to file 1098-T forms for students whose qualified tuition and related expenses are waived

or paid entirely with scholarships or grants; however, the forms are generally available even for such cases, perhaps
because of automated reporting to the IRS by universities.
23See Chetty et al. (2011) for a comparison of total enrollment based on 1098-T forms and statistics from the

Current Population Survey. Chetty et al. use this measure to analyze the impacts of Project STAR on college
attendance. Dynarski et al. (2011) show that using data on college attendance from the National Clearinghouse
yields very similar estimates to Chetty et al.’s findings, providing further confirmation that the 1098-T based college
indicator is accurate.
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and all 1098-T forms for year 1999, we group individuals by the higher education institution they

attended in 1999. We take a 0.25% random sample of those not attending a higher education

institution in 1999 and pool them together in a separate “no college”category. For each college or

university (including the “no college”group), we then compute average W-2 earnings of the students

in 2009 when they are aged 30. Among colleges attended by students in our data, the average

value of our earnings index is $42,932 for four-year colleges and $28,093 for two-year colleges.24

For students who did not attend college, the imputed mean earnings level is $16,361.

Neighborhood Quality. We use data from 1040 forms to identify each household’s ZIP code of

residence in each year. For non-filers, we use the ZIP code of the address to which the W-2 form

was mailed. If an individual did not file and has no W-2 in a given year, we impute current ZIP

code as the last observed ZIP code. We construct a measure of a neighborhood’s SES using data

on the percentage of college graduates in the individual’s ZIP code from the 2000 Census.

Retirement Savings. We measure retirement savings using contributions to 401(k) accounts

reported on W-2 forms from 1999-2010. We define saving for retirement as an indicator for ever

contributing to a 401(k) during this period.

Teenage Birth. We first identify all women who claim a dependent when filing their taxes at

any point before the end of the sample in tax year 2010. We observe dates of birth and death for all

dependents and tax filers until the end of 2010 as recorded by the Social Security Administration.

We use this information to identify women who ever claim a dependent who was born while the

mother was a teenager (between the ages of 13 and 19 as of 12/31 the year the child was born). We

refer to this outcome as having a “teenage birth,”but note that this outcome differs from a direct

measure of teenage birth in three ways. First, it does not capture teenage births to individuals

who never file a tax return before 2010. Second, the mother must herself claim the child as a

dependent at some point during the sample years. If the child is claimed as a dependent by the

grandmother for all years of our sample, we would never identify the child. In addition to these two

forms of under-counting, we also over-count the number of children because our definition could

miscategorize other dependents as biological children. Because most such dependents tend to be

elderly parents, the fraction of cases that are incorrectly categorized as teenage births is likely to

be small. Even though this variable does not directly measure teenage births, we believe that it is

a useful measure of outcomes in adulthood because it correlates with observables as expected (see

24For the small fraction of students who attend more than one college in a single year, we define college quality
based on the college that received the largest tuition payments on behalf of the student.
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Section 5.3). For instance, women who score higher on tests, attend college, or have higher income

parents are significantly less likely to have teenage births.

Parent Characteristics. We link students to their parents by finding the earliest 1040 form

from 1996-2010 on which the student was claimed as a dependent. We identify parents for 94.7%

of students linked with tax records as adults. The remaining students are likely to have parents

who did not file tax returns in the early years of the sample when they could have claimed their

child as a dependent, making it impossible to link the children to their parents. Note that this

definition of parents is based on who claims the child as a dependent, and thus may not reflect the

biological parent of the child.

We define parental household income as Adjusted Gross Income (capped at $117,000, the 95th

percentile in our sample), averaged over the three years when the child was 19-21 years old.25

For years in which parents did not file, we impute parental household income from wages and

unemployment benefits, each of which are reported on third-party information forms. We define

marital status, home ownership, and 401(k) saving as indicators for whether the first primary filer

who claims the child ever files a joint tax return, makes a mortgage interest payment (based on

data from 1040’s for filers and 1099’s for non-filers), or makes a 401(k) contribution (based on data

from W-2’s) during the years when the child is between 19 and 21. We define mother’s age at

child’s birth using data from Social Security Administration records on birth dates for parents and

children. For single parents, we define the mother’s age at child’s birth using the age of the filer

who claimed the child, who is typically the mother but is sometimes the father or another relative.26

When a child cannot be matched to a parent, we define all parental characteristics as zero, and we

always include a dummy for missing parents in regressions that include parent characteristics.

3.3 Analysis Dataset

Because most of the adult outcomes we analyze are at age 20 or afterward, we restrict our linked

analysis sample to students who would graduate high school in the 2007-08 school year (and thus

25To account for changes in marital status, we always follow the primary filer who first claimed the child and define
parent characteristics based on the tax returns filed by that parent when the child is between 19 and 21. For instance,
if a single mother has a child and gets married when the child was 18, we would define household income as AGI
including the mother and her new husband when the child is 19-21. If the child does not turn 21 before 2010, we
code the parent characteristics as missing.
26We define the mother’s age at child’s birth as missing for 471 observations in which the implied mother’s age

at birth based on the claiming parent’s date of birth is below 13 or above 65. These are typically cases where the
parent does not have an accurate birth date recorded in the SSA file.
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turn 20 in 2010) if they progress through school at a normal pace.27 The school district records

were linked to the tax data using an algorithm based on standard identifiers (date of birth, state of

birth, gender, and names) described in Appendix A, after which individual identifiers were removed

to protect confidentiality. 89.2% of the observations in the school district data were matched to

the tax data and match rates do not vary with teacher VA (see Table 2 below).

The linked analysis dataset has one row per student per subject (math or English) per school

year, as illustrated in Appendix Table 1. Each observation in the analysis dataset contains the

student’s test score in the relevant subject test, demographic information, and class and teacher

assignment if available. Each row also lists all the students’available adult outcomes (e.g. college

attendance and earnings at each age) as well as parent characteristics. We organize the data in

this format so that each row contains information on a treatment by a single teacher conditional

on pre-determined characteristics, facilitating estimation of equation (3). We account for the fact

that each student appears multiple times in the dataset by clustering standard errors as described

in section 4.1.

To maximize precision, we estimate teacher value-added using all years for which school district

data are available (1991-2009). However, the impacts of teacher VA on test scores and adult

outcomes that we report in the main text use only the observations in the linked analysis dataset

(i.e., exclude students who would graduate high school after 2008), unless otherwise noted.28

3.4 Summary Statistics

The analysis dataset contains 6.0 million student-year-subject observations, of which 4.8 million

have information on teachers. Table 1 reports summary statistics for the linked analysis dataset;

see Appendix Table 2 for corresponding summary statistics for the full school district data used to

estimate teacher value-added. Note that the summary statistics are student-school year-subject

means and thus weight students who are in the district for a longer period of time more heavily, as

does our empirical analysis. There are 974,686 unique students in our analysis dataset; on average,

each student has 6.14 subject-school year observations.

The mean test score in the analysis sample is positive and has a standard deviation below

27A few classrooms contain students at different grade levels because of retentions or split-level classroom structures.
To avoid dropping a subset of students within a classroom, we include every classroom that has at least one student
who would graduate school during or before 2007-08 if he progressed at the normal pace. That is, we include all
classrooms in which mini(12+ school year − gradei) ≤ 2008.
28Within the analysis data, we use all observations for which the necessary data are available. In particular, when

estimating the impacts of VA on scores, we include observations that were not matched to the tax data.
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1 because we normalize the test scores in the full population that includes students in special

education classrooms and schools (who typically have lower test scores). The mean age at which

students are observed is 11.7 years. 76% of students are eligible for free or reduced price lunches.

2.7% of the observations are for students who are repeating the current grade.

The availability of data on adult outcomes naturally varies across cohorts. There are more than

4.6 million observations for which we observe college attendance at age 20. We observe earnings

at age 25 for 2.2 million observations and at age 28 for 850,000 observations. Because many of

these observations at later ages are for older cohorts of students who were in middle school in the

early 1990s, they do not contain information on teachers. As a result, there are only 1.4 million

student-subject-school year observations for which we see both teacher assignment and earnings at

age 25, 376,000 at age 28, and only 63,000 at age 30. The oldest age at which the sample is large

enough to obtain reasonably precise estimates of teachers’impacts on earnings turns out to be age

28. Mean earnings at age 28 is $20,327 (in 2010 dollars), which includes zero earnings for 34% of

the sample.

For students whom we are able to link to parents, mothers are 28 years old on average when

the student was born. The mean parent household income is $35,476, while the median is $27,144

Though our sample includes more low income households than would a nationally representative

sample, it still includes a substantial number of higher income households, allowing us to analyze

the impacts of teachers across a broad range of the income distribution. The standard deviation

of parent income is $31,080, with 10% of parents earning more than $82,630.

As a benchmark for evaluating the magnitude of the causal effects estimated below, Appendix

Tables 3-6 report estimates of OLS regressions of the adult outcomes we study on test scores. Both

math and English test scores are highly positively correlated with earnings, college attendance, and

neighborhood quality and are negatively correlated with teenage births. In the cross-section, a 1 SD

increase in test score is associated with a $7,440 (37%) increase in earnings at age 28. Conditional

on prior-year test scores and other controls that we use in our analysis below, a 1 SD increase in

the current test score is associated with $2,545 (11.6%) increase in earnings on average. We show

below that the causal impact of teacher VA on earnings is commensurate to this correlation in

magnitude.
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4 Does Value-Added Accurately Measure Teacher Quality?

Recent studies by Kane and Staiger (2008) and Rothstein (2010) among others have reached con-

flicting conclusions about whether VA estimates are biased by student sorting (i.e., whether As-

sumption 1 in Section 2.2 holds). In this section, we revisit this debate by presenting new tests

for bias in VA estimates.

4.1 Empirical Methodology

Throughout our empirical analysis, we regress various outcomes on estimated teacher value-added.

In this subsection, we discuss four aspects of our methodology that are relevant for all the regression

estimates reported below: (1) leave-out mean estimation of VA, (2) control vectors, (3) standard

error calculations, and (4) the treatment of outliers.

First, there is a mechanical correlation between µ̂j and student outcomes in a given school year

because µ̂j is estimated with error and these errors also affect student outcomes.
29 We address this

problem by following Jacob, Lefgren and Sims (2010) and use a leave-year-out (jackknife) mean to

calculate teacher quality.30 For example, when predicting teachers’effects on student outcomes in

1995, we estimate µ̂1995
j based on all years of the sample except 1995. We then regress outcomes for

students in 1995 on µ̂1995
j . More generally, for each observation in year t, we omit score residuals

from year t when calculating teacher quality.31 This procedure is essential to eliminate mechanical

biases due to estimation error in µ̂j both in our tests for sorting and our estimates of teachers’

impacts on adult outcomes.32

Second, we use a control vector that parallels existing VA models (e.g., Kane and Staiger 2008)

29This problem does not arise when estimating the impacts of treatments such as class size because the treatment
is observed; here, the size of the treatment (teacher VA) must itself be estimated, leading to correlated estimation
errors.
30Because we need at least two classes to define a leave-out mean, our analysis only applies to the population of

teachers whom we see teaching two or more classes between 1991 and 2009. Among the classrooms with the requisite
controls to estimate value-added (e.g. lagged test scores), we are unable to calculate a leave-out measure of VA for
9% of students because their teachers are observed in the data for only one year. The first-year VA of teachers who
leave after one year is 0.01 SD lower than the first-year VA of those who stay for more years. Hence, the mean VA
of the subset of teachers in our sample is only 0.001 SD higher than mean VA in the population, suggesting that our
estimates are likely to be fairly representative of teacher effects in the full population.
31An alternative approach is to split the sample in two, for instance using data after 1995 to estimate teacher VA

and data before 1995 to estimate its impacts on outcomes for students who are old enough to be seen in the tax data.
We find that such a split-sample approach yields similar but less precise estimates.
32Regressing student outcomes on teacher VA without using a leave-out mean effectively introduces the same

estimation errors on both the left and right hand side of the regression, yielding biased estimates of teachers’causal
impacts. This is the reason that Rothstein (2010) finds that “fifth grade teachers whose students have above average
fourth grade gains have systematically lower estimated value-added than teachers whose students underperformed in
the prior year.”
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to estimate student test score residuals using (3):

Aigt = f1g(Ai,t−1) + f2(ej(i,g,t)) + φ1Xigt + φ2X̄c(i,g,t) + νigt

We parameterize the control function for lagged test scores f1g(Ai,t−1) using a cubic polynomial

in prior-year scores in math and a cubic in prior-year scores in English. We interact these cubics

with the student’s grade level to permit flexibility in the persistence of test scores as students age.

We parametrize the control function for teacher experience f2(ej(i,g,t)) using dummies for years of

experience from 0 to 5, with the omitted group being teachers with 6 or more years of experience.33

The student-level control vector Xigt consists of the following variables: ethnicity, gender, age,

lagged suspensions and absences, and indicators for grade repetition, special education, limited

English. The class-level control vector X̄c(i,g,t) includes (1) class size and class-type indicators

(honors, remedial), (2) cubics in class and school-grade means of prior-year test scores in math and

English each interacted with grade, (3) class and school-year means of all the individual covariates

Xigt, and (4) grade and year dummies. To avoid estimating VA based on very few observations,

we follow Kane and Staiger (2008) and exclude classrooms that have fewer than 7 observations

with test scores and the full vector of controls Xigt (2% of observations). Importantly, the control

vectors Xigt and X̄c(i,g,t) consist entirely of variables from the school district dataset. We adopt

this approach because our goal is to assess properties of value-added estimated without access to

information available in tax data, which will not typically be available to school districts.

When estimating the impacts of teacher VA on adult outcomes using (9), we omit the student-

level controls Xigt. By omitting Xigt, we can conduct most of our analysis of long-term impacts

using a dataset collapsed to class means, which significantly reduces computational costs. We show

in Appendix Table 7d that the inclusion of individual controls has little impact on the coeffi cients

and standard errors of interest for a selected set of specifications.

Third, our outcomes have a correlated error structure because students within a classroom

face common class-level shocks and because our analysis dataset contains repeat observations on

students in different grades. One natural way to account for these two sources of correlated

errors is to cluster standard errors by both student and classroom (Cameron, Gelbach, and Miller

2011). Unfortunately, implementing two-way clustering on a dataset with 6 million observations

was infeasible because of computational constraints. We instead cluster standard errors at the

33We choose this functional form because prior work (e.g. Rockoff 2004) has shown that the impacts of teacher
experience rise sharply and then stabilize after the first three years.

22



school by cohort level, which adjusts for correlated errors across classrooms and repeat student

observations within a school. Clustering at the school-cohort level is convenient because it again

allows us to conduct our analysis on a dataset collapsed to class means. We evaluate the robustness

of our results to alternative forms of clustering in Appendix Table 7 and show that school-cohort

clustering yields more conservative confidence intervals than the more computationally intensive

techniques.

Finally, in our baseline specifications, we exclude classrooms taught by teachers whose estimated

VA µ̂tj falls in the top two percent for their subject (above 0.21 in math and 0.13 in English) because

these teachers’ impacts on test scores appear suspiciously consistent with testing irregularities

indicative of cheating. Jacob and Levitt (2003) develop a proxy for cheating that measures the

extent to which a teacher generates very large test score gains that are followed by very large

test score losses for the same students in the subsequent grade. Jacob and Levitt establish that

this is a valid proxy by showing that it is highly correlated with unusual answer sequences that

directly point to test manipulation. Teachers in the top 2% of our estimated VA distribution are

significantly more likely to show suspicious patterns of test scores gains, as defined by Jacob and

Levitt’s proxy (see Appendix Figure 1).34 We therefore trim the top 2% of outliers in all the

specifications reported in the main text. We investigate how trimming at other cutoffs affects

our main results in Appendix Table 8. The qualitative conclusion that teacher VA has long-term

impacts is not sensitive to trimming, but including teachers in the top 2% reduces our estimates of

teachers’impacts on long-term outcomes by 20-40%. In contrast, excluding the bottom 2% of the

VA distribution has little impact on our estimates, consistent with the view that test manipulation

to obtain high test score gains is responsible for the results in the upper tail. Directly excluding

teachers who have suspect classrooms based on Jacob and Levitt’s proxy for cheating yields very

similar results to trimming on VA itself.

Because we trim outliers, our baseline estimates should be interpreted as characterizing the

relationship between VA and outcomes below the 98th percentiles of VA. This is the relevant

range for many questions, such as calculating the gains of switching a child from an average teacher

to a teacher 1 SD above the mean. If school districts can identify and eliminate teacher cheating —

34Appendix Figure 1 plots the fraction of classrooms that are in the top 5 percent according to Jacob and Levitt’s
proxy, defined in the notes to the figure, vs. our leave-out-year measure of teacher value-added. On average,
classrooms in the top 5 percent according to the Jacob and Levitt measure have test score gains of 0.46 SD in year t
followed by mean test score losses of 0.43 SD in the subsequent year. Stated differently, teachers’impacts on future
test scores fade out much more rapidly in the very upper tail of the VA distribution. Consistent with this pattern,
these exceptionally high VA teachers also have very little impact on their students’long-term outcomes.
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e.g. by analyzing the persistence of test score gains as suggested by Jacob and Levitt —our estimates

would also shed light on the gains from retaining the remaining high-VA teachers. Nevertheless,

the fact that high-VA outliers do not have lasting impacts on scores or adult outcomes serves as

a warning about the risks of manipulability of VA measures. The signal content of VA measures

could be severely reduced if teachers game the system further when VA is actually used to evaluate

teachers. This is perhaps the most important caveat to our results and a critical area for further

work, as we discuss in the conclusion.

4.2 VA Estimates and Out-of-Sample Forecasts

The first step in our empirical analysis is to estimate leave-year-out teacher effects µ̂tj for each

teacher j and year t in our sample. We estimate VA using all years in the school district data

for which we have teacher information (1991-2009). The standard deviation of teacher effects is

σµ = 0.118 in math and σµ = 0.081 in English, very similar to estimates from prior work. Note that

these standard deviations measure the dispersion in teacher effects that is orthogonal to teacher

experience as well as other controls.35 Throughout, we scale µ̂tj in units of student test scores, i.e.,

a 1 unit increase in µ̂tj refers to a teacher whose VA is predicted to raise student test scores by 1

SD. Because the standard deviation of teacher effects is approximately 0.1 SD of the student test

score distribution (averaging across math and English), a 1 SD increase in teacher VA corresponds

to an increase of 0.1 in µ̂tj .

We begin our evaluation of the properties of µ̂tj by verifying that our VA estimates have pre-

dictive power for test score gains outside the sample on which they were estimated. Under our

assumption in (3) that true teacher effects µj are time-invariant, a 1 SD increase in µ̂tj should be

associated with a 1 SD increase in test scores in year t.36 Figure 1a plots student test scores

(combining English and math observations) vs. our leave-year-out estimate of teacher VA in our

linked analysis dataset. We condition on the classroom-level controls used when estimating the

value-added model in this and all subsequent figures by regressing both the x- and y-axis variables

on the vector of controls and then computing residuals. We then bin the student-subject-year

residuals into twenty equal-size groups (vingtiles) of µ̂tj and plot the mean residual score in each

35Students assigned to first-year teachers have 0.03 SD lower test score gains, consistent with prior work. Because
the impact of experience on scores is small, we have insuffi cient power to estimate its impacts on adult outcomes; we
can rule out neither 0 effects nor effects commensurate to the impacts of VA estimated below. We therefore do not
analyze teacher experience further in this paper.
36Although the estimation error in value-added leads to attenuation bias, the shrinkage correction we implement

in (4) exactly offsets the attenuation bias so that a 1 unit increase in µ̂tj should raise scores by 1 unit.
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bin. Note that these binned scatter plots provide a non-parametric representation of the condi-

tional expectation function but do not show the underlying variance in the individual-level data.

The regression coeffi cient and standard error reported in each figure are estimated on the micro

data, with standard errors clustered by school-cohort as described above.

Figure 1a shows that a teacher with µ̂tj = 1 generates a 0.86 SD increase in students’test scores

in year t, with a t-statistic over 80 (see also Column 1 of Table 2). This confirms that the VA

estimates are highly predictive of student test scores. The coeffi cient on µ̂tj is below 1, consistent

with the findings of Kane and Staiger (2008), most likely because teacher value-added is not in fact

a time-invariant characteristic. For instance, teacher quality may fluctuate when teachers switch

schools or grades (Jackson 2010) and may drift over time for other reasons (Goldhaber and Hansen

2010). Such factors reduce the accuracy of forecasts based on data from other years. Because we

estimate teacher VA using data from 1991-2009 but only include cohorts who graduate from high

school before 2008 in our analysis dataset, the time span between the point at which we estimate

VA and analyze test score impacts is especially large in our analysis sample. Replicating Column

1 of Table 2 on the full sample used to estimate teacher VA yields a coeffi cient on µ̂tj of 0.96.

Because we are forced to use data from more distant years to identify value-added, our estimates

of the impacts of teacher quality on adult outcomes may be slightly downward-biased.37

The relationship between µ̂tj and students’ test scores in Figure 1a could reflect either the

causal impact of teachers on achievement or persistent differences in student characteristics across

teachers. For instance, µ̂tj may forecast students’test score gains in other years simply because

some teachers are always assigned students with higher income parents. We now implement two

sets of tests for such sorting.

4.3 Test 1: Selection on Observable Characteristics

Value-added estimates consistently measure teacher quality only if they are uncorrelated with un-

observed components of student scores. A natural first test of this identifying assumption is to

examine the correlation between our estimates of VA and variables omitted from standard VA

models.38 We use two sets of variables to evaluate selection: parent characteristics and prior test

37We do not account for variation over time in VA because our primary goal is to assess the properties of teacher
VA measures currently being used by school districts. In future work, it would be interesting to develop time-varying
measures of VA and evaluate whether they are better predictors of adult outcomes.
38Such correlation could arise from either actual selection of students to teachers with higher quality µj or sorting

across teachers that is unrelated to true quality but generates measurement error in µ̂tj that is correlated with student
characteristics. Either of these sources of correlation would violate Assumption 1 and generate biased estimates of
VA.
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scores.

Parent Characteristics. The parent characteristics from the tax data are ideal to test for se-

lection because they have not been used to fit value-added models in prior work but are strong

predictors of student achievement. We collapse the parent characteristics into a single index by

regressing test scores on mother’s age at child’s birth, indicators for parent’s 401(k) contributions

and home ownership, and an indicator for the parent’s marital status interacted with a quartic in

parent’s household income.39 Let Apit denote the predicted test score for student i in year t in

this regression, which we calculate only for students for whom test score data are available. These

predicted test scores are an average of the parent characteristics, weighted optimally to reflect their

relative importance in predicting test scores. The standard deviation of predicted test scores is

0.26, roughly 30% of the standard deviation of actual test scores in our analysis sample.

Figure 1b plots Âpc,g−1 against teacher VA measured using a leave-year-out mean as described

above. There is no relationship between predicted scores and teacher VA. At the upper bound of

the 95% confidence interval, a 1 standard deviation increase in teacher VA raises predicted scores

based on parent characteristics by 0.01 SD (see also Column 2 of Table 2). This compares with

an actual score impact of 0.86 SD, showing that very little of the association between teacher VA

and actual test scores is driven by sorting on omitted parent characteristics. Note that this result

does not imply that students from higher vs. lower socioeconomic status families uniformly get

teachers of the same quality. Our finding is that controlling for the rich set of observables available

in school district databases, such as test scores in the previous grade, is adequate to account for

sorting of students to teachers based on parent characteristics. That is, if we take two students

who have the same 4th grade test scores, classroom characteristics, ethnicity, suspensions, etc., the

student assigned to a teacher with higher estimated VA in grade 5 does not systematically have

different parental income or other characteristics.

A second, closely related method of assessing selection on parent characteristics is to control

for predicted scores Apit when estimating the impact of VA on actual scores. Columns 3-4 in Table

2 restrict to the sample in which both score and predicted score are non-missing; the coeffi cient

on µ̂tj changes only from 0.866 to 0.864 after controlling for predicted scores. Note that parent

characteristics have considerable predictive power for test scores even conditional on the controls

39We code the parent characteristics as 0 for the 5.4% of matched students for whom we are unable to find a parent,
and include an indicator for having no parent matched to the student. We also code mother’s age at child’s birth as
0 for a small number of observations where we match parents but do not have data on parents’ages, and include an
indicator for such cases.
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used to estimate the value-added model; the t-statistic on the predicted score Apit exceeds 60. The

fact that parent characteristics are strong predictors of residual test scores yet are uncorrelated

with µ̂tj suggests that the degree of bias in VA estimates is likely to be small (Altonji, Elder, and

Taber 2005).

A third approach to evaluating the extent to which the omission of parent characteristics affects

VA estimates is to re-estimate µ̂tj , controlling for the parent characteristics to begin with. We repeat

the three-step estimation procedure in Section 2.2, controlling for mean parent characteristics by

classroom when estimating (3) using the same functional form used above to predict test scores.

We then correlate estimates of teacher VA that control for parent characteristics with our original

estimates that condition only on school-district observables. The correlation coeffi cient between

the two VA estimates is 0.999, as shown in rows 1 and 2 of Table 3. All three tests show that

selection on previously unobserved parent characteristics generates minimal bias in standard VA

estimates.

Prior Test Scores. Another set of pre-determined variables that can be used to test for selection

are prior test scores (Rothstein 2010). Because value-added models control for Ai,t−1, one can only

evaluate sorting on Ai,t−2 (or, equivalently, on lagged gains, Ai,t−1 − Ai,t−2). The question is

whether controlling for additional lags substantially affects VA estimates once one controls for

Ai,t−1. We now present three tests to answer this question that parallel those above for parent

characteristics.

We first examine whether twice-lagged test scores are correlated with our baseline estimates of

VA. Figure 1c plots twice-lagged scores Ai,t−2 against teacher VA, following the same methodology

used to construct Figure 1a. There is virtually no relationship between VA and twice-lagged score

conditional on the controls used to estimate the VA model. As a result, controlling for Ai,t−2

when estimating the impact of VA on out-of-sample test scores has little effect on the estimated

coeffi cient (columns 6-7 of Table 2). The coeffi cient on VA is stable despite the fact that Ai,t−2

has significant predictive power for Ai,t, even conditional on Ai,t−1 and X̄c; the t-statistic on Ai,t−2

exceeds 350. Finally, controlling flexibly for Ai,t−2 at the individual level (using cubics in math

and English scores) when estimating the VA model does not affect estimates significantly. The

correlation coeffi cient between our baseline VA estimates and estimates that control for Ai,t−2 is

0.975, as shown in row 3 of Table 3. We conclude based on these tests that selection on grade t−2

scores generates minimal bias in VA estimates once one conditions on t− 1 characteristics.

We further develop this test by examining the correlation of our baseline VA measure with
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additional leads and lags of test scores. If our VA measures reflect the causal impact of teachers,

the correlation between current teacher VA on test scores should jump in the current year. To

test this hypothesis, we estimate (9), changing the dependent variable to test scores Ai,t+s for

s ∈ [−4, 4], four years before and after the current grade t. Figure 2 plots the coeffi cients on

current teacher VA from each of these regressions.40 As predicted, teachers’ impacts on scores

jump at the end of the grade taught by that teacher. A 1 unit increase in teacher VA raises

end-of-grade test scores by 0.86 SD, matching the estimate in column 1 of Table 2. In contrast,

the same increase in teacher VA in grade g has essentially no impact on test scores prior to grade g.

This finding suggests that VA measures capture causal effects of teachers rather than systematic

differences across teachers in their students’characteristics, as such characteristics would have to

be uncorrelated with past test scores and only affect the current score.

Figure 2 also shows that the impact of current teacher VA fades out in subsequent grades. Prior

studies (e.g., Kane and Staiger 2008, Jacob, Sims, and Lefgren 2010, Rothstein 2010) document

similar fade-out after one or two years but have not determined whether test score impacts continue

to deteriorate after that point. The broader span of our dataset allows us to estimate test score

persistence more precisely.41 In our data, the impact of a 1 SD increase in teacher quality stabilizes

at approximately 0.3 SD after 3 years, showing that students assigned to teachers with higher VA

achieve long-lasting test score gains.

The last column of Table 2 analyzes the correlation between teacher VA and the probability that

a student is matched to the tax data. In this column, we regress an indicator for being matched

on teacher VA, using the same specification as in the other columns. There is no significant

relationship between VA and match rates, suggesting that our estimates of the impacts of VA on

outcomes in adulthood are unlikely to be biased by attrition.

4.4 Test 2: Teacher Switching Quasi-Experiments

The preceding tests show that the bias in VA estimates due to the omission of observables such

as parent characteristics and twice-lagged scores is minimal. They do not, however, rule out the

40The estimates underlying this figure and their associated standard errors are reported in Appendix Table 9.
Naturally, the grades used to estimate each of the points in Figure 2 vary because scores are only available for grades
3-8. We continue to find that VA has an effect on prior test scores that is two orders of magnitude smaller than its
impact on current test scores if we restrict to individual grades and use the available leads and lags (e.g. two leads
and two lags for grade 6).
41For instance, Jacob, Lefgren, and Sims estimate one-year persistence using 32,422 students and two-year per-

sistence using 17,320 students. We estimate one-year persistence using more than 2.8 million student-year-subject
observations and four-year persistence using more than 790,000 student-year-subject observations.
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possibility that students are sorted to teachers based on unobservable characteristics orthogonal to

these variables. The ideal method of testing for selection on unobservables is to evaluate whether

VA estimates using observational data accurately predict students’test score gains when students

are randomly assigned to teachers. Kane and Staiger (2008) implement such an experiment in Los

Angeles involving approximately 3,500 students and 150 teachers. Kane and Staiger’s point esti-

mates suggest that there is little bias in VA estimates, but their 95% confidence interval is consistent

with bias of up to 50% because of their relatively small sample size (Rothstein 2010). Moreover,

Rothstein notes that because certain classes and schools were excluded from the experiment, the

external validity of the findings is unclear.

Motivated by these concerns, we develop a quasi-experimental method of estimating the degree

of bias due to selection on unobservables. Our approach yields more precise estimates of the degree

of bias on a representative sample of a school district’s student population.

Research Design. Our research design exploits the fact that adjacent cohorts of students within

a school are frequently exposed to teachers with very different levels of VA because of teacher

turnover. In our school district dataset, 14.5% of teachers switch to a different grade within

the same school the following year, 6.2% of teachers switch to a different school within the same

district, and another 6.2% switch out of the district entirely. These changes in the teaching staff

from one year to the next generate variation in VA that is “quasi-experimental” in the sense that

it is plausibly orthogonal to students’characteristics.

To understand our test, suppose a high-VA teacher moves from 4th grade in school s to another

school between 1994 and 1995. Because students entering grade 4 in school s in 1995 have lower VA

teachers on average, their mean test scores should be lower than the 1994 cohort if VA estimates

capture teachers’ causal impacts. Moreover, the size of the change in test scores across these

adjacent cohorts should correspond to the change in mean VA. For example, in a school-grade

cell with three classrooms, the loss of a math teacher with a VA estimate of 0.3 based on prior

data should decrease average math test scores in the entire school-grade cell by 0.1. Importantly,

because we analyze the data at the school-grade level, we do not exploit information on classroom

assignment for this test, eliminating any bias due to non-random assignment of students across

classrooms.

Changes in the quality of the teaching staff across school years constitute quasi-experimental

variation under the assumption that they are uncorrelated with changes in the quality of students

across adjacent cohorts. Let ∆µ̂sgmt denote the change in mean teacher VA µ̂sgmt from year
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t− 1 to year t in grade g in subject m (math or reading) in school s, and define mean changes in

student unobservables ∆εsgmt and ∆εµsgmt analogously. The identification assumption underlying

the quasi-experimental design is

(11) Cov
(
∆µ̂sgmt,∆εsgmt

)
= 0 and Cov

(
∆µ̂sgmt,∆ε

µ
sgmt

)
= 0.

This assumption requires that the change in mean VA within a school-grade cell is uncorrelated with

the change in the average quality of students, as measured by unobserved determinants of scores

and earnings. This assumption could potentially be violated by endogenous student or teacher

sorting. Student sorting at an annual frequency is minimal because of the costs of changing schools.

During the period we study, most students would have to move to a different neighborhood to switch

schools, which families would be unlikely to do simply because a single teacher leaves or enters a

given grade. While endogenous teacher sorting is plausible over long horizons, the sharp changes

we analyze are likely driven by idiosyncratic shocks such as changes in staffi ng needs, maternity

leaves, or the relocation of a spouses. Hence, we believe that (11) is a plausible restriction at high

frequencies in our data and we present evidence supporting this assumption below.

Our approach complements recent work analyzing the impacts of teacher turnover on student

achievement, but is the first to use turnover to validate VA models directly. Rivkin, Hanushek,

and Kain (2005) identify the variance of teacher effects from differences in variances of test score

gains across schools with low vs. high teacher turnover. In contrast, we identify the impacts of

teachers from first moments —the relationship between changes in mean scores across cohorts and

mean teacher quality —rather than second moments. Our approach does not rely on comparisons

across schools with different levels of teacher turnover, which may also differ in other unobserved

dimensions that could impact earnings directly. For instance, Ronfeldt et al. (2011) show that

higher rates of teacher turnover lead to lower student achievement, although they do not assess

whether the mean value-added of the teaching staff predicts student achievement across cohorts.42

Jackson and Bruegmann (2009) document peer effects by analyzing whether the VA of teachers

who enter or exit affects the test scores of other teachers’students in their school-grade cell, but

do not compare changes in mean test scores by cohort to the predictions of VA models.43

42This is less of a concern in Rivkin, Hanushek, and Kain’s analysis of test score impacts because they are able to
test whether the variance of test score gains is higher in grades with high turnover, thereby netting out school fixed
effects. This is infeasible with outcomes in adulthood, which are observed only after schooling is complete. Rivkin,
Hanushek, and Kain are unable to implement the teacher switcher design we develop here because they do not have
class assignment data and thus cannot estimate each teacher’s individual effect µj , which is necessary to construct
the school-grade-cohort level mean of teacher quality.
43The peer effects documented by Jackson and Bruegmann could in principle affect our validation of VA using
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Event Studies. We begin our analysis of teaching staff changes with event studies of scores

around the entry and exit of high and low VA teachers (Figure 3). Let year 0 denote the school

year that a teacher enters or exits a school-grade-subject cell and define all other school years

relative to that year (e.g., if the teacher enters in 1995, year 1992 is -3 and year 1997 is +2). We

define an entry event as the arrival of a teacher who did not teach in that school-grade-subject cell

for the three preceding years; analogously, we define an exit event as the departure of a teacher who

does not return to the same school-grade-subject cell for at least three years. We estimate VA for

each teacher using only data outside the six-year window used for the event studies to eliminate

bias due to correlated estimation errors.44 We define a teacher as “high VA”if her estimated VA

based on years outside the event study window is in the top 5% of the distribution for her subject;

a “low VA”teacher has an estimated VA in the bottom 5%.45 To obtain a balanced sample, we

analyze events for which we have data on average test scores at the school-grade-subject level for

at least three years before and three years after the event.46 Because these balanced event studies

require data over several years, we use the full school district data spanning 1991-2009 (rather than

only the analysis sample linked to the tax data), excluding school-grade-subject cells in which we

have no information on teachers.

Figure 3a plots the impact of the entry of a high-VA teacher on mean test scores. The solid

series plots school-grade-subject-year means of test scores in the three years before and after a

high-VA teacher enters the school-grade-subject cell, with year fixed effects removed to eliminate

any secular trends.47 We do not condition on any other covariates in this figure: each point simply

shows average test scores for different cohorts of students within a school-grade-subject cell adjusted

for year effects. When a high-VA teacher arrives, end-of-year test scores in the subject and grade

the switcher design. However, peer learning effects are likely to be smaller with teacher exits than entry, provided
that knowledge does not deteriorate very rapidly. We find that teacher entry and exit yield broadly similar results,
suggesting that spillovers across teachers are not a first-order source of bias for our technique.
44More precisely, we calculate VA for each teacher in each year excluding a five year window (two years prior, the

current year, and two years post). Coupled with our definitions of entry and exit —which require that the teacher
not be present in the school-grade-subject cell for 3 years before or after the event —this ensures that we do not use
any data from the relevant cell between event years -3 and +2 to compute teacher VA.
45 In cases where multiple teachers enter or exit at the same time, we use the teachers’mean VA in decided whether

it falls in the top or bottom 5% of the VA distribution. To eliminate potential selection bias, we include high VA
outliers in these event studies and our cross-cohort research design more generally; that is, we do not drop the top 2%
outliers who may achieve test score gains via manipulation as we do in our baseline analysis that exploits variation
across classrooms. Excluding these outliers yields very similar conclusions, as can be seen from Figure 4, which
shows that changes in VA predict changes in test scores accurately throughout the value-added distribution.
46 In school-grade-subject cells with multiple events (e.g. entry of a high VA teacher in both 1995 and 1999), we

include all such events by stacking the data and using the three years before and after each event.
47We remove year fixed effects in this and all other event study graphs by regressing mean test scores on year dum-

mies, computing residuals, and adding back the mean test score in the estimation sample to facilitate interpretation
of the scale.
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taught by that teacher rise immediately. The null hypothesis that test scores do not change from

year -1 to year 0 is rejected with p < 0.001, with standard errors clustered by school-cohort as

above. The magnitude of the increase in test scores, which is 0.036 SD from year -1 to year 0, is

very similar to what one would forecast based on the change in mean teacher VA. Mean VA rises by

0.044 SD from year -1 to year 0.48 The estimate in Column 1 of Table 2 based on cross-classroom

variation implies that we should expect this increase in teacher VA to increase students’scores by

0.044 × 0.861 = 0.038 SD.49 The hypothesis that the observed change in mean scores of 0.036

equals the predicted change of 0.038 is not rejected (p = 0.76).

Figure 3a implies that value-added accurately measures teachers’ impacts on students’ test

scores under the identification assumption in (11). We evaluate this assumption by examining

test scores for the same cohort of students in the previous school year. For example, the entry of

a high-VA teacher in grade 5 in 1995 should have no impact on the same cohort’s 4th grade test

scores in 1994. The dashed line in Figure 3a plots test scores in the previous grade for the same

cohorts of students. Test scores in the prior grade remain stable across cohorts both before and

after the new teacher arrives, supporting our view that school quality and student attributes are

not changing sharply around the entry of a high-VA teacher.50

The remaining panels of Figure 3 repeat the event study in Panel A for other types of arrivals

and departures. Figure 3b examines current and lagged test scores around the departure of a high-

VA teacher. There is a smooth negative trend in both current and lagged scores, suggesting that

high-VA teachers leave schools that are declining in quality. However, scores in the grade taught

by the teacher drop sharply relative to prior scores in the event year, showing that the departure of

the high quality teacher lowers the achievement of subsequent cohorts of students. Figures 3c and

3d analyze the arrival and departure of low VA teachers. Test scores in the grade taught by the

teacher fall sharply relative to prior-year scores when low VA teachers enter a school-grade cell and

rise sharply when low VA teachers leave. In every case, the magnitude of the test score change is

significantly different from 0 with p < 0.001 but is not significantly different from what one would

48When computing this change in mean VA, we weight teachers by the number of students they teach. For teachers
who do not have any VA measures from classrooms outside the leave-out window, we impute VA as the mean leave-out
VA in the sample. For a small fraction of students for whom we have no teacher information (5% of observations),
we also impute teacher VA as the sample mean.
49We expect the observed change in scores when a high VA teachers enters to be smaller than the change in mean

VA for the same reason that the cross-class coeffi cient is less than 1 —namely that teacher VA likely changes over time,
and we use data from at least three years before or after the event to estimate teacher VA. Hence, the appropriate
test for bias is whether the change in test scores matches what one would predict based on the cross-class coeffi cient
of 0.861.
50We also find that class size does not change significantly around the entry and exit events we study.
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forecast based on the change in mean teacher VA.51 Together, these event studies provide direct

evidence that deselecting low VA teachers and retaining high-VA teachers improves the academic

achievement of students.

Teaching Staff Changes. The event studies focus on the tails of the teacher VA distribution and

thus exploit only a small fraction of the variation arising from teacher turnover in the data. We

now exploit all the variation due to teaching staff changes to obtain a broader estimate of the degree

of bias in VA measures. To do so, we first estimate VA for each teacher using data excluding a

given pair of adjacent years, t−1 and t. We then calculate the change in mean teacher VA for each

school-grade-subject-year cell and define ∆µsgmt as mean teacher VA in year t minus mean teacher

VA in year t− 1. With this definition, the variation in ∆µsgmt is driven purely by changes in the

teaching staff and not by changes in the estimated VA for the teachers. This leave-out technique

again ensures that changes in mean test scores across cohorts t and t − 1, which we denote by

∆Asgmt, are not spuriously correlated with estimation error in ∆µsgmt.

Figure 4a plots the changes in mean test scores across cohorts ∆Asgmt against changes in mean

teacher value-added ∆µsgmt. As in the event studies, we remove year fixed effects so that the

estimate is identified purely from differential changes in teacher quality across school-grade-subject

cells over time. For comparability with the estimates in Table 2, we only use data from the linked

analysis sample in this figure. Changes in the quality of the teaching staff strongly predict changes

in test scores across consecutive cohorts of students in a school-grade-subject cell. The estimated

coeffi cient on ∆µsgmt is 0.843, with a standard error of 0.053 (Table 4, Column 1). This estimate

is very similar to the coeffi cient of 0.861 obtained from the cross-class out-of-sample forecast in

Column 1 of Table 2. The point estimate of the degree of bias is 2% and is not statistically

distinguishable from 0. At the lower bound of the 95% confidence interval, we reject bias of more

than 14%.

Figures 4b through 4d evaluate the identification assumption in (11) underlying our research

design using additional placebo tests. Each of these panels replicates Figure 4a with a different

dependent variable; the corresponding regression estimates are reported in Columns 2-4 of Table 4.

Figure 4b shows that changes in the quality of the teaching staff are unrelated to changes in parent

characteristics, as captured by the predicted score measure used in Column 2 of Table 2. In Figures

4c and 4d, we examine the impact of changes in the teaching staff in one subject on mean scores

51The event studies in Figure 3 pool variation from teachers switching within schools, across schools, and out of
the district. Teacher switches across grades within schools have similar impacts on test scores to teacher switches
out of schools.
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in the other subject. Here, it is important to distinguish between elementary and middle schools.

In elementary school, students have one teacher for both math and English. Because elementary

school teachers’math and English VA are highly correlated (r = 0.59), changes in mean teacher VA

across cohorts are highly correlated across the two subjects. But students have different teachers

for the two subjects in middle school, and changes in mean VA across cohorts in one subject are

thus uncorrelated with changes in mean VA in the other subject. Hence, if (11) holds, we would

expect changes in mean teacher VA in English to have much smaller effects on test scores in math

(and vice versa) in middle school relative to elementary school. Figures 4c and 4d show that this is

indeed the case. In elementary school, changes in mean teacher VA across cohorts strongly predict

changes in test scores in the other subject (t = 11.9, p < 0.001), whereas in middle schools, the

coeffi cient is near zero and statistically insignificant (t = 0.04, p = 0.97).

Given the results of these placebo tests, any violation of (11) would have to be driven by selection

on unobserved determinants of test scores that have no effect on prior test scores and only affect

the subject in which teaching staff changes occur. We believe that such selection is implausible

given the information available to teachers and students and the constraints they face in sorting

across schools at high frequencies.

Finally, we use our quasi-experimental design to evaluate how the choice of controls affects the

degree of bias in VA estimates. The results of this analysis are reported in the last column of

Table 3. For comparability, we estimate the models on a constant sample of observations for which

the covariates required to estimate all the models are available. Row 1 recalculates the degree of

bias —defined as the percentage difference between the cross-cohort and cross-class VA coeffi cients

as above —on this sample for the baseline model. Rows 2 and 3 show that the degree of bias is

very similar when parental controls and twice-lagged test scores are including in the control vector,

consistent with the very high correlations between these VA estimates and the baseline estimates

discussed above. In row 4, we include only the controls that are a function of prior-year test scores:

cubic polynomials in student, classroom, and school-grade math and English scores interacted with

grade level. These VA estimates remain fairly highly correlated with the baseline estimates but

have a somewhat larger degree of bias (14%). Finally, row 5 estimates VA without any controls

at all, i.e. using raw mean test scores by teacher. These VA estimates are very poorly correlated

with the other VA measures and are biased by nearly 90%. We conclude that most of the bias

in VA estimates is eliminated by controlling for lagged test scores, and that further controls for

demographic variables typically available in school district datasets bring the bias close to zero.
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4.5 Relationship to Prior Work

Our results on the validity of VA measures reconcile the conflicting findings of prior work, including

Kane and Staiger (2008) and Rothstein (2010). Rothstein reports two important results, both of

which we replicate in our data. First, there is significant grouping of students into classrooms based

on twice-lagged scores (lagged gains), even conditional on once-lagged scores (Rothstein 2010, Table

4). Second, this grouping on lagged gains generates minimal bias in VA estimates: controlling for

twice-lagged scores does not have a significant effect on VA estimates (Rothstein 2010, Table 6;

Kane and Staiger 2008, Table 6).52 The results from our tests in Table 2 and Figure 2 are consistent

with Rothstein’s conclusions. Therefore, the literature is in agreement that VA measures do not

suffer from bias due to selection on observables.

Rothstein quite appropriately emphasizes that his findings raise serious concerns about the

potential for bias due to selection on unobservable student characteristics.53 Kane and Staiger’s

point estimates from a randomized experiment suggest that selection on unobservables is relatively

small. Our quasi-experimental tests based on teaching staff changes confirm that the bias due to

selection on unobservables turns out to be negligible with greater precision. In future work, it may

be useful to explore why the grouping on lagged gains documented by Rothstein is not associated

with significant selection on unobservables in practice. However, the findings in this paper and

prior work are suffi cient to conclude that standard estimates of teacher VA can provide accurate

forecasts of teachers’average impacts on students’test scores.

Note that our test, like the experiment implemented by Kane and Staiger, evaluates the accuracy

of VA measures on average across teachers. It is conceivable that VA measures are biased against

some subgroups of teachers and that this bias is offset by a second source of bias which is negatively

correlated with true value-added (Rothstein 2009, page 567). We focus on the accuracy of average

forecasts in this paper because our analysis of long-term impacts primarily evaluates the mean

impacts of teacher value-added on students. A fruitful direction for future work would be to adapt

the methods we propose here to evaluate the accuracy and predictive content of VA measures for

52An interesting question is how Rothstein’s two findings are consistent with each other. There are two explanations
for this pattern. First, the degree of grouping that Rothstein finds on Aig,t−2 has small effects on residual test score
gains because the correlation between Aig,t−2 and Aigt conditional on Aig,t−1 is relatively small. Second, if the
component of Aig,t−2 on which there is grouping is not the same as the component that is correlated with Ai,t, VA
estimates may be completely unaffected by grouping on Ai,t−2. For both reasons, one cannot infer from grouping
on Ai,t−2 that VA estimates are significantly biased by selection on Ai,t−2. See Goldhaber and Chaplin (2012) for
further discussion of these and related issues.
53To be clear, this was the original lesson from Rothstein (2010). In personal correspondence, Rothstein notes

that his findings are “neither necessary nor suffi cient for there to be bias in a VA estimate”and that “if the selection
is just on observables, the bias is too small to matter. The worrying scenario is selection on unobservables.”
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subgroups of the population.

5 Impacts of Value-Added on Outcomes in Adulthood

The results in the previous section show that value-added is a good proxy for a teacher’s ability to

raise students’test scores. In this section, we analyze whether value-added is also a good proxy for

teachers’long run impacts. We do so by regressing outcomes in adulthood Yi on teacher quality

µ̂j(i,g) and observable characteristics, as in (9). We begin by pooling the data across all grade levels

and then present results that estimate grade-specific coeffi cients on teacher VA. Recall that each

student appears in our dataset once for every subject-year with the same level of Yi but different

values of µj(i,g). Hence, in this pooled regression, the coeffi cient estimate β represents the mean

impact of having a higher VA teacher for a single grade between grades 4-8. We account for

the repeated student-level observations by clustering standard errors at the school-cohort level as

above.

We first report estimates based on comparisons of students assigned to different teachers, which

identifies the causal impact of teachers under Assumption 2. We then evaluate this identification

assumption by comparing these estimates to those obtained from the teacher switcher research

design, which isolates quasi-experimental variation in teacher VA. We analyze impacts of teacher

VA on three sets of outcomes: college attendance, earnings, and other indicators such as teenage

birth rates.

5.1 College Attendance

We begin by analyzing the impact of teacher VA on college attendance at age 20, the age at which

college attendance rates are maximized in our sample. In all figures and tables in this section, we

condition on the standard classroom-level controls as in Figure 1.

Figure 5a plots college attendance rates at age 20 against teacher VA. Being assigned to a

higher VA teacher in a single grade raises a student’s probability of attending college significantly.

The null hypothesis that teacher VA has no effect on college attendance is rejected with a t-statistic

above 7 (p < 0.001). To interpret the magnitude of the impact, recall that a 1 SD increase in

teacher VA raises students’test scores by 0.1 SD on average across math and English. Because

we measure teacher quality µj in units of student test scores, a 1 unit increase in µj corresponds

to a 10 SD increase in teacher VA. Hence, dividing the regression coeffi cients β by 10 yields a

rough estimate of the impact of a 1 SD increase in teacher VA on the outcome of interest. In the
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case of college attendance, β = 4.92%, implying that a 1 SD better teacher in a single grade raises

the probability of being in college by 0.49% at age 20, relative to a mean of 37.8%. This impact

of a 1.25% increase in college attendance rates for a 1 SD better teacher is roughly similar to the

impacts on other outcomes we document below.

To confirm that the relationship in Figure 5a reflects the causal impact of teachers rather than

selection bias, we implement tests analogous to those in the previous section in Table 5. As a

reference, the first column replicates the OLS regression estimate reported in Figure 5a. In column

2, we replace actual college attendance with predicted attendance based on parent characteristics,

constructed in the same way as predicted scores above. The estimates show that one would not

have predicted any significant difference in college attendance rates across students with high vs.

low VA teachers based on parent characteristics.

To account for potential bias due to unobservables, we exploit quasi-experimental variation from

changes in teaching staff as above. Column 3 regresses changes in mean college attendance rates

across adjacent cohorts within a school-grade-subject cell on the change in mean teacher VA due

to teacher staff changes ∆µsgmt, defined as in Table 4. As above, we include no controls other

than year effects. Students who happen to be in a cohort in their school that is taught by higher

VA teachers are significantly more likely to go to college. The estimate of β = 6.1% from this

quasi-experimental variation is similar to that obtained from the cross-classroom comparison in

column 1, though less precise because it exploits much less variation. The null hypothesis that

β = 0 is rejected with p < 0.01, while the hypothesis that β is the same in columns 1 and 3 is not

rejected. This finding provides further evidence that teacher VA has a causal impact on college

attendance rates and confirms that comparisons across classrooms with high and low VA teachers

yield consistent estimates of teachers’impacts.54

Next, we analyze whether high-VA teachers also improve the quality of colleges that their

students attend. We quantify college quality using the age 30 earnings of students who previously

attended the same college, as described in Section 3. Students who do not attend college are

assigned the mean earnings of individuals who do not attend college. Figure 5b plots this earnings-

based index of college quality (based on the colleges students attend at age 20) vs. teacher VA.

Again, there is a highly significant relationship between the quality of colleges students attend and

54This result rules out bias due to omitted variables that affect long-term outcomes but not test scores. For
instance, one may be concerned that students who are assigned to better teachers in one subject are also assigned
to better teachers in other subjects or better extracurricular activities, which would inflate estimates of long-term
impacts. The cross-cohort research design rules out such biases because fluctuations in teaching staff are highly
subject-specific and are uncorrelated with other determinants of student outcomes, as shown in Figure 4d.
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the quality of the teachers they had in grades 4-8 (t = 9.5, p < 0.001). A 1 SD improvement in

teacher VA (i.e., an increase of 0.1 in µj) raises college quality by $164 (0.66%) on average (Column

4 of Table 5). Column 5 shows that exploiting the cross-cohort teacher switcher variation again

yields similar estimates of the impact of teacher VA on college quality.

The $164 estimate combines intensive and extensive margin responses because it includes the

effect of increased college attendance rates on projected earnings. Isolating intensive margin

responses is more complicated because of selection bias: students who are induced to go to college by

a high-VA teacher will tend to attend lower-quality colleges, pulling down mean earnings conditional

on attendance. We take two approaches to overcome this selection problem and identify intensive-

margin effects. First, we define an indicator for “high quality” colleges as those with average

earnings above the median among colleges that students attend in our sample, which is $39,972.

We regress this indicator on teacher VA in the full sample, including students who do not attend

college. Column 6 of Table 5 shows that high-VA teachers increase the probability that students

attend high quality colleges. A 1 SD increase in teacher VA raises the probability of attending a

high quality college by 0.36%, relative to a mean of 17%. This increase is most consistent with an

intensive margin effect, as students would be unlikely to jump from not going to college at all to

attending a high quality college. Second, we derive a lower bound on the intensive margin effect

by assuming that those who are induced to attend college attend a college of average quality. The

mean college quality conditional on attending college is $38,623, while the quality for all those who

do not attend college is $16,361. Hence, at most (38, 623 − 16, 361) × 0.49% = $109 of the $164

impact is due to the extensive margin response, confirming that teachers improve the quality of

colleges that students attend.

Figure 5c shows the impact of teachers on college attendance at other ages. Teacher VA has

a significant impact on the college attendance rate through age 25, partly reflecting attendance

of graduate or professional schools. The impacts on college attendance at age 25 are smaller in

magnitude (0.28% per 1 SD of teacher VA) than at age 20 because the mean college attendance

rate at age 25 is 18.1% in this sample (Column 7 of Table 5). These continued impacts on college

attendance in the mid 20’s affect our analysis of earnings impacts, to which we now turn.

5.2 Earnings

The correlation between annual earnings and lifetime income rises rapidly as individuals enter the

labor market and begins to stabilize only in the late twenties. We therefore begin by analyzing the
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impacts of teacher VA on earnings at age 28, the oldest age at which we have a suffi ciently large

sample of students to obtain precise estimates.55 Figure 6 plots earnings at age 28 against teacher

VA, conditioning on the same set of classroom-level controls as above. Being assigned to a higher

value-added teacher has a clear, statistically significant impact on earnings, with the null hypothesis

of β = 0 rejected with p < 0.01. A 1 SD increase in teacher VA in a single grade increases earnings

at age 28 by $182, 0.9% of mean earnings in the regression sample. This regression estimate is

also reported in Column 1 of Table 6. Column 2 shows the effect on wages at age 30. The point

estimate is slightly larger than that at age 28, but because the sample is only one-sixth the size,

the 95% confidence interval for the estimate is very wide. We therefore focus on earnings impacts

up to age 28 for the remainder of our analysis.

To interpret the magnitude of the effect of teacher VA on earnings at age 28, we calculate

the lifetime earnings impact of having a 1 SD higher VA teacher in a single grade. We assume

that the percentage gain in earnings remains constant at 0.9% over the life-cycle and that earnings

are discounted at a 3% real rate (i.e., a 5% discount rate with 2% wage growth) back to age

12, the mean age in our sample. Under these assumptions, the mean present value of lifetime

earnings at age 12 in the U.S. population is approximately $522,000.56 Hence, the financial value

of having a 1 SD higher VA teacher (i.e., a teacher at the 84th percentile instead of the median) is

0.9%×$522, 000 ' $4, 600 per grade.57 Another useful benchmark is the increase in earnings from

an additional year of schooling, which is around 6% per year (see e.g., Oreopoulos 2006). Having a

teacher in the first percentile of the value-added distribution (2.33 SD below the mean) for one year

thus has an earnings impact equivalent to attending school for about 60% of the school year. This

magnitude is plausible, insofar as attending school even with very low quality teaching is likely to

have some returns due to benefits from peer interaction and other factors.

Next, we analyze how teacher value-added affects the trajectory of earnings by examining earn-

ings impacts at each age from 20 to 28. We run separate regressions of earnings at each age on

teacher VA and the standard vector of classroom controls. Figure 7a plots the coeffi cients from

these regressions (which are reported in Appendix Table 10), divided by average earnings at each

55Although individuals’ earnings trajectories remain quite steep at age 28, earnings levels at age 28 are highly
correlated with earnings at later ages (Haider and Solon 2006), a finding we confirm in the tax data (Chetty et al.
2011, Appendix Table I).
56We calculate this number using the mean wage earnings of a random sample of the U.S. population in 2007 to

obtain an earnings profile over the lifecycle, and then inflate these values to 2010 dollars (see Chetty et al. 2011 for
details).
57The undiscounted earnings gains (assuming a 2% growth rate but 0% discount rate) are approximately $25,000

per student.
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age to obtain percentage impacts. As above, we multiply the estimates by 0.1 to interpret the

effects as the impact of a 1 SD increase in teacher VA. The impact of teacher quality on earnings

rises almost monotonically with age. At early ages, the impact of higher VA is negative and

significant, which is consistent with our finding that higher VA teachers induce their students to

go to college. As these students enter the labor force, they have steeper earnings trajectories and

eventually earn significantly more than students who had lower VA teachers in grades 4-8. The

earnings impacts become positive and statistically significant starting at age 26. By age 28, the

earnings impact is nearly 1% of earnings, as in Figure 7. Stated differently, higher teacher VA

increases the growth rate of earnings when students are in their 20s. In column 3 of Table 6, we

verify this result by regressing the change in earnings from age 22 to age 28 on teacher VA. As

expected, a 1 SD increase in teacher VA increases earnings growth by $180 (1.3%) over this period.

We obtain further insight into the role of college in mediating these changes in earnings trajec-

tories by comparing the impacts of teacher VA on students who attend grade schools with low vs.

high college attendance rates. We divide the sample into two groups: students who attend schools

with an age 20 college attendance rate above vs. below 35%, the sample mean. In schools with

low college attendance rates at age 20, few students are in college at age 25. As a result, teacher

VA does not have a significant impact on college attendance rates at age 25 for students in these

schools, as shown in Column 4 of Table 6. In contrast, in schools with high college attendance

rates, a 1 SD increase in teacher VA raises college attendance rates by 0.47 percentage points even

at age 25. If college attendance masks earnings impacts, we should expect the effects of teacher

VA on wage growth to be higher in these high college attendance schools.

Figure 7b tests this hypothesis by plotting the effect of value-added on earnings by age for

students who attended schools with above- and below- average college attendance rates. As

expected, the impacts of teacher VA on earnings rise much more sharply with age for students who

attended grade schools with high college attendance rates. Teacher VA has a negative impact on

earnings in the early 20’s for students who attended such schools, whereas its impacts are always

positive for students who attended schools with low college attendance rates. The positive impacts

of teacher VA on earnings even in subgroups that are unlikely to attend college indicates that better

teaching has direct returns in the labor market independent of its effects on college attendance.

Columns 6 and 7 of Table 6 confirm that the effect of teacher VA on wage growth from age 22 to

28 is much larger for students who attended schools with high college attendance rates.

The results in Figure 7 suggest that the 0.9% mean earnings impact per SD of teacher VA
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at age 28 may understate the impact on lifetime earnings, particularly for high SES groups. To

gauge how much further the earnings impacts might rise over time, we use the cross-sectional

correlation between test scores and earnings, which we can estimate with greater precision up to

age 30. Appendix Table 4 lists coeffi cients from OLS regressions of earnings at each age on test

scores. These regressions pool all grades, control for the same variables used to estimate the

baseline value-added model, and use a constant sample of students for whom we observe earnings

from 20-30 to eliminate cohort effects. The correlation between test scores and earnings is roughly

20% higher at age 30 than at age 28. If the causal impacts of teacher VA match these cross-

sectional patterns by age, the lifetime earnings impact of a 1 SD improvement in teacher VA in a

single grade would likely exceed 1.1%.

The cross-sectional relationship between test scores and earnings reported in Appendix Table

4 implies that a 0.1 SD increase in test scores is associated with a 1.1% increase in earnings at

age 28. Hence, the impact of teacher VA is similar to the impact one would have predicted based

on the impact of VA on end-of-grade test scores and the cross-sectional relationship between test

scores and earnings. This result aligns with previous evidence that improvements in education

raise contemporaneous scores, then fade out in later scores (as shown in Figure 2), only to reemerge

in adulthood (Deming 2009, Heckman et al. 2010c, Chetty et al. 2011).

5.3 Other Outcomes

We now analyze the impacts of teacher VA on other outcomes, starting with our “teenage birth”

measure, which is an indicator for filing a tax return and claiming a dependent who was born

while the mother was a teenager (see Section 3). We first evaluate the cross-sectional correlations

between this proxy for teenage birth and test scores as a benchmark. Students with a 1 SD higher

test score are 3.8 percentage points less likely to have a teenage birth relative to a mean of 8%

(Appendix Table 3). Conditional on lagged test scores and other controls, a 1 SD increase in test

score is associated with a 1 percentage point reduction in teenage birth rates. These correlations

are significantly larger for populations that have a higher risk of teenage birth, such as minorities

and low-income students (Appendix Table 5). These cross-sectional patterns support the use of

this measure as a proxy for teenage births even though we can only identify children who are

claimed as dependents in the tax data.

Column 1 of Table 7 analyzes the impact of teacher VA on the fraction of female students who

have a teenage birth. Having a 1 SD higher VA teacher in a single year from grades 4 to 8 reduces
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the probability of a teen birth by 0.099 percentage points, a reduction of roughly 1.25%, as shown

in Figure 8a. This impact is very similar to the cross-sectional correlation between scores and

teenage births, echoing our results on earnings and college attendance.

Column 2 of Table 7 analyzes the impact of teacher VA on the socio-economic status of the

neighborhood in which students live at age 25, measured by the percent of college graduates living

in that neighborhood. A 1 SD increase in teacher VA raises neighborhood SES by 0.063 percentage

points (0.5% of the mean) by this metric, as shown in Figure 8b. Column 3 shows that this impact

on neighborhood quality more than doubles at age 28, consistent with the growing earnings impacts

documented above.

Finally, we analyze impacts on retirement savings. Teacher VA does not have a significant

impact on 401(k) savings at age 25 in the pooled sample (not reported). However, Column 4

shows that for students who attended schools with low college attendance rates (defined as in

Column 4 of Table 6), a 1 SD increase in teacher VA raises the probability of having a 401(k)

at age 25 by 0.19 percentage points (1.6% of the mean). In contrast, Column 5 shows that for

students in high college-attendance schools, the point estimate of the impact is negative. These

results are consistent with the impacts on earnings trajectories documented above. In schools with

low college attendance rates, students who get high-VA teachers find better jobs by age 25 and are

more likely to start saving in 401(k)’s. In schools with high college attendance rates, students who

get high-VA teachers are more likely to be in college at age 25 and thus may not obtain a job in

which they begin saving for retirement until they are older.

5.4 Heterogeneity Analysis

In Table 8, we analyze whether teacher value-added has heterogeneous effects across demographic

groups and subjects. We study impacts on college quality at age 20 rather than earnings because

the heterogeneity analysis requires large samples and because the college quality measure provides

a quantitative metric based on projected earnings gains.

Panel A studies impact heterogeneity across population subgroups. Each number in the first

row of the table is a coeffi cient estimate from a separate regression of college quality on teacher

VA, with the same classroom-level controls as in the previous sections. Columns 1 and 2 consider

heterogeneity by gender. Columns 3 and 4 consider heterogeneity by parental income, dividing

students into groups above and below the median level of parent income in the sample. Columns

5 and 6 split the sample into minority and non-minority students.
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Two lessons emerge from Panel A of Table 8. First, the point estimates of the impacts of

teacher VA are larger for girls than boys, although one can reject equality of the impacts only

at a 10% significance level. Second, the impacts are larger for higher-income and non-minority

households in absolute terms. For instance, a 1 SD increase in VA raises college quality by $123

for children whose parents have below-median income, compared with $209 for those whose parents

have above-median income. However, the impacts are much more similar as a percentage of mean

college quality: 0.56% for low-income students vs. 0.75% for high-income students.

The larger dollar impact for high socioeconomic students could be driven by two channels: a

given increase in teacher VA could have larger impacts on the test scores of high SES students

or a given increase in scores could have larger long-term impacts. The second row of coeffi cient

estimates of Table 8 shows that the impacts of teacher VA on scores are virtually identical across

all the subgroups in the data. In contrast, the correlation between scores and college quality is

significantly larger for higher SES students (Appendix Table 5). Although not conclusive, these

findings suggest that the heterogeneity in teachers’ long term impacts is driven by the second

mechanism, namely that high SES students benefit more from test score gains. Overall, the

heterogeneity in treatment effects indicates that teacher quality is complementary to family inputs

and resources, i.e. the marginal value of better teaching is larger for students from high SES

families. An interesting implication of this result is that higher income families should be willing

to pay more for teacher quality.

Panel B of Table 8 analyzes differences in teachers’impacts across subjects. For these regres-

sions, we split the sample into elementary (Columns 1-3) and middle (Columns 4-6) schools. We

first analyze the effects of teacher VA in each subject separately on a constant sample with a fixed

set of controls and then include both math and English teacher VA in the same regression. In all

the specifications, the coeffi cients on VA are larger in English than math. An English teacher who

raises her students’test scores by 1 SD has a larger long-term impact than a math teacher who

generates a commensurate test score gain. However, it is important to recall that the variance of

teacher effects is larger in math than English: a 1 SD improvement in teacher VA raises math test

scores by approximately 0.118 SD, compared with 0.081 SD in English. Hence, a 1 SD increase

in the quality of a math teacher actually has a relatively similar impact to a 1 SD increase in the

quality of an English teacher.

Including both English and math VA in the same regression has very different effects in ele-

mentary vs. middle school. As discussed above, students have one teacher for both subjects in
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elementary school but not middle school. Because a given teacher’s math and English VA are

highly correlated (r = 0.59), the magnitude of the two subject-specific coeffi cients drops by nearly

40% when included together in a single regression for elementary school (Column 3). Intuitively,

when math VA is included by itself in elementary school, it partly picks up the effect of having

better teaching in English as well. In contrast, including both math and English teacher VA in

middle school has a much smaller effect on the estimates, as shown in Column 6.

5.5 Robustness Checks

We conclude our empirical analysis by assessing the robustness of our results to alternative empirical

specifications, focusing on the simplifications we made for computational tractability.

First, we assess the robustness of our statistical inferences to alternative forms of clustering

standard errors. Appendix Table 7 reports alternative standard error calculations for three of

our main specifications: the impact of teacher VA on scores, college attendance at age 20, and

earnings at age 28. We estimate each of these models using the baseline control vector used in

Table 2. Panels A of Appendix Table 7 shows that a block bootstrap at the student level, which

accounts for repeated student observations, yields narrower confidence intervals than school-cohort

clustering. Panel B shows that in smaller subsamples of our data, two-way clustering by class and

student yields slightly smaller standard errors than school-cohort clustering. Panel C shows that

school-cohort clustering is also conservative relative to clustering by classroom in a sample that

includes only the first observation for each student.

Second, we assess the robustness of our estimates to alternative control vectors (Panel D of

Appendix Table 7). Including the student-level controls used when estimating the VA model in

addition to the baseline classroom-level control vector used to estimate the regressions in Tables 2,

5, and 6 has virtually no impact on the coeffi cients or standard errors. The last row of the table

evaluates the impacts of including school by year fixed effects. In this row, we include school by

year effects both when estimating VA and in the second-stage regressions of VA on adult outcomes.

The inclusion of school by year fixed effects does not affect our qualitative conclusion that teacher

VA has substantial impacts on adult outcomes, but the estimated impact on college attendance at

age 20 falls, while the impact on earnings at age 28 rises.58

Finally, we replicate the baseline results using raw estimates of teacher quality without the

58We did not include school-year fixed effects in our baseline specifications because school districts typically seek
to rank teachers within their districts rather than within schools. Moreover, our tests in Section 4 suggest that such
fixed effects are not necessary to obtain unbiased estimates of the impacts of teacher VA.
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Empirical Bayes shrinkage correction, denoted by νj in Section 2. We again exclude the current

year when estimating νj to account for correlated estimation error as above. In columns 1-4 of

Appendix Table 11, we estimate specifications analogous to (9) using OLS, with a leave-year-out

measure νtj on the right hand side instead of µ̂
t
j . The estimated coeffi cients are roughly half of those

reported above, reflecting the substantial attenuation from measurement error in teacher quality.

The shrinkage correction implemented in our baseline measure of teacher VA is one approach to

correct for this measurement error. As an alternative approach, we regress each outcome on test

scores, instrumenting for scores using the raw teacher effects νj . The resulting two-stage least

squares coeffi cients are reported in Columns 5-7 of Appendix Table 11. These 2SLS estimates are

very similar to our baseline results, confirming that our findings are not sensitive to the way in

which correct for measurement error in teacher quality.

6 Policy Calculations

In this section, we use our estimates to answer two policy questions. First, do teachers matter more

in some grades relative to others? Second, what are the expected earnings gains from retaining or

deselecting teachers based on their estimated VA?

6.1 Impacts of Teachers by Grade

The reduced-form estimates in the previous section identify the impacts of replacing a single teacher

j with another teacher j′ in one classroom. While this question is of interest to parents, policymak-

ers are typically interested in the impacts of reforms that improve teacher quality more broadly.

As shown in (5), the reduced-form impact of changing the teacher of a single classroom includes

the impacts of being tracked to a better teacher in subsequent grades. While a parent may be

interested in the reduced-form impact of teacher VA in grade g (βg), a policy reform that raises

teacher quality in grade g will not allow every child to get a better teacher in grade g + 1. In this

section, we estimate teachers’net impacts in each grade, holding fixed future teacher VA (β̃g), to

shed light on this policy question.

Because we have no data after grade 8, we can only estimate teachers’net effects holding fixed

teacher quality up to grade 8.59 We therefore set β̃8 = β8. We recover β̃g from estimates of βg

by subtracting out the impacts of future teachers on earnings iteratively. Consider the effect of

59 If tracking to high school teachers is constant across all grades in elementary school, our approach accurately
recovers the relative impacts of teachers in grades 4-8.
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teacher quality in 7th grade. Our reduced-form estimate of β7, obtained by estimating (9) using

only grade 7, can be decomposed into two terms:

β7 = β̃7 + ρ78β̃8

where ρ78 is the extent to which teacher VA in grade 7 increases teacher VA in grade 8. We can

estimate ρ̂78 using an OLS regression that parallels (9) with future teacher VA as the dependent

variable:

µ̂j(i,8) = α+ ρ̂78µ̂j(i,7) + f1(Ai,t−1) + f2(ej(i,7,t)) + φ1Xi7t + φ2X̄c(i,7,t) + ηµit78.

Combining these two equations shows that the net impact of the grade 7 teacher is simply her

reduced-form impact minus her indirect impact via tracking to a better 8th grade teacher:

β̃7 = β7 − ρ̂78β8.

Iterating backwards, we can calculate β̃6 by estimating ρ̂68 and ρ̂67 and so on until we obtain the

full set of net impacts. We show formally that this procedure recovers net impacts β̃g in Appendix

B.

This approach to calculating teachers’ net impacts has three important limitations. First,

it assumes that all tracking to future teachers occurs via teacher VA on test scores. We allow

students who have high-VA teachers in grade g to be tracked to higher VA (µj(i,g+1)) teachers in

grade g + 1, but not to teachers with higher unobserved earnings impacts µY . We are forced to

make this strong assumption because we have no way to estimate teacher impacts on earnings that

are orthogonal to VA, as discussed in Section 2. Second, β̃g does not net out potential changes

in other factors besides teachers, such as peer quality or parental inputs. Hence, β̃g cannot be

interpreted as the “structural”impact of teacher quality holding fixed all other inputs in a general

model of the education production function (e.g., Todd and Wolpin 2003). Finally, our approach

assumes that teacher effects are additive across grades. We cannot identify complementarities in

teacher VA across grades because our identification strategy forces us to condition on lagged test

scores, which are endogenous to the prior teacher’s quality. It would be valuable to relax these

assumptions in future work to obtain a better understanding of how the sequence of teachers one

has in school affects outcomes in adulthood.

Figure 9 displays our estimates of βg and β̃g, which are also reported in Appendix Table 12.

We use college quality (projected earnings at age 30 based on college enrollment at age 20) as
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the outcome to have suffi cient precision to identify grade-specific effects. We estimate βg using

specifications analogous to Column 4 of Table 5 for each grade separately. Because the school

district data system did not cover many middle schools in the early and mid 1990s, we cannot

analyze the impacts of teachers in grades 6-8 for more than half the students who are in 4th grade

before 1994. To obtain a more balanced sample for comparisons across grades, we restrict attention

to cohorts who would have been in 4th grade during or after 1994 for this analysis.

Figure 9 has two lessons. First, the net impacts β̃g are close to the reduced-form impacts.

This is because the tracking coeffi cients ρg,g′ are generally quite small, as shown in Appendix Table

13. Tracking is slightly larger in middle school, as one would expect, but still has a relatively small

impact on β̃g. Second, teachers’long-term impacts are large and significant in all grades. Although

the estimates in each grade have relatively wide confidence intervals, there is no systematic trend

in the impacts. This pattern is consistent with the cross-sectional correlations between test scores

and adult outcomes, which are also relatively stable across grades (Appendix Table 6).

One issue that complicates cross-grade comparisons is that teachers spend almost the entire

school day with their students in elementary school (grades 4-5 as well as 6 in some schools),

but only their subject period (Math or English) in middle school (grades 7-8). If teachers’skills

are correlated across subjects —as is the case with math and English value-added, which have a

correlation of 0.59 for elementary school teachers —then a high-VA teacher should have a greater

impact on earnings in elementary school than middle school because they spend more time with the

student. The fact that high-VA math and English teachers continue to have substantial impacts

even in middle school underscores our conclusion that higher quality education has substantial

returns well beyond early childhood.

6.2 Impacts of Selecting Teachers on VA

In this section, we use our estimates to predict the potential earnings gains from selecting and

retaining teachers on the basis of their VA. The primary objective of these calculations is to

illustrate the magnitudes of teachers’impacts rather than evaluate selection as a policy to improve

teacher quality.

We make three assumptions in our calculations. First, we assume that the percentage impact

of a 1 unit improvement in teacher VA on earnings observed at age 28, which we denote by b,

remains constant over the life-cycle. Second, we do not account for general equilibrium effects that

may reduce wages if all children are better educated or for non-monetary returns to education such
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as reductions in teenage birth rates (Oreopoulos and Salvanes 2010). Third, we follow Krueger

(1999) and discount earnings gains at a 3% real annual rate (consistent with a 5% discount rate

and 2% wage growth) back to age 12, the average age in our sample. Under this assumption, the

present value of earnings at age 12 for the average individual in the U.S. population is $522, 000,

as noted above.

We first evaluate Hanushek’s (2009, 2011) proposal to replace the 5 percent of teachers with the

lowest value-added with teachers of average quality. To calculate the impacts of such a policy, note

that a teacher in the bottom 5% of the true VA distribution is on average 2.04 standard deviations

below the mean teacher quality. Therefore, replacing a teacher in the bottom 5% with an average

teacher generates a gain per student of

$522, 000× 2.04× bσµ

where σµ denotes the standard deviation of teacher effects. We set b = $1, 815/20, 362 = 8.9%

based on the estimate in Column 1 of Table 6 and σµ = (0.081 + 0.118)/2, the average of the SD

of teacher effects across math and English. With these values, replacing a teacher in the bottom

5% with an average teacher generates earnings gains of $9, 422 per student in present value at age

12, or $267, 000 for a class of average size (28.3 students). The undiscounted cumulative earnings

gains from deselection are 5.5 times larger than these present value gains ($52,000 per student and

$1.48 million per classroom), as shown in Appendix Table 14.60 These calculations show that

improving teacher VA —whether by selection, better training, or other methods —is likely to have

substantial returns for students.

The $267, 000 present value gain is based on selecting teachers based on their true VA µj . In

practice, we only observe a noisy estimate of µj based on a small number of classrooms. To

calculate the gains from deselecting the bottom 5% of teachers based on their estimated VA, note

that (4) implies that σµ̂ = σµ
√
r(nc) where r(nc) is the reliability of VA estimates based on nc

classrooms of data. Hence, with nc years of data, the bottom 5 percent of teachers ranked on

µ̂j have a mean forecasted quality of 2.04σµ
√
r(nc). The gain from deselecting the lowest 5% of

teachers based on nc classrooms of data is thus G(nc) = $267, 000 ·
√
r(nc).61

60These calculations assume that deselected teachers are replaced by teachers with the same amount of experience
rather than rookies. Rookie teachers’test score impacts are 0.03 SD below those of experienced teachers, on average.
However, given that the median teacher remains in our data for 6 years, the expected benefits of deselection would
be reduced by less than 3% ( 0.03/6

2.04σµ
) from hiring inexperienced teachers to replace those deselected.

61This calculation accounts for estimation error due to noise but ignores drift in VA over time (except for drift due
to teacher experience, which we control for in our analysis). Drift affects the calculation in two ways. First, our
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Figure 10 plots G(nc) assuming a constant class size of 28.3 students; see Appendix Table 14

for the values underlying this figure. It yields three lessons. First, the gains from deselecting

low quality teachers on the basis of very few years of data are much smaller than the maximum

attainable gain of $267,000 because of the noise in VA estimates. With one year of data, the

gains are about half as large ($135,000). This is because reliability with one class of students

is approximately r(1) = 1
4 in our data, consistent with prior work on teacher effects (Staiger and

Rockoff 2010, McCaffrey et al. 2009). That is, one-quarter of the variance in the mean test score

residual for a single classroom is driven by teacher quality, with the remaining variance due to

classroom and student level noise. Second, the gains grow fairly rapidly with more data in the

first 3 years but the marginal gains from additional information are small. With three years of

data, one can achieve more than 70% of the maximum impact ($190,000). Waiting for three more

years would increase the gain by $30,000 but has an expected cost of 3 × $190, 000 = $570, 000.

The marginal gains from obtaining one more year of data are outweighed by the expected cost of

having a low VA teacher on the staff even after the first year (Staiger and Rockoff 2010). Third,

because VA estimates are noisy, there could be substantial gains from using other signals of quality

to complement VA estimates, such as principal evaluations or other subjective measures based on

classroom observation.

An alternative approach to improving teacher quality is to increase the retention of high-VA

teachers. Retaining a teacher at the 95th percentile of the estimated VA distribution (using 3

classrooms of data) for an extra year would yield present value earnings gains of $522, 000× 1.96×

bσµ
√
r(3) = $182, 000. In our data, roughly 9% of teachers in their third year do not return

to the school district for a fourth year.62 Clotfelter et al. (2008) estimate that a $1,800 bonus

payment in North Carolina reduces attrition rates by 17%. Based on this estimate, a one time

bonus payment of $1,800 to high-VA teachers who return for a fourth year would increase retention

rates in the next year by 1.5 percentage points and generate an average benefit of $2,730. The

expected benefit of offering a bonus to even an excellent (95th percentile) teacher is only modestly

larger than the cost because for every extra teacher retained, one must pay bonuses to 60 (91/1.5)

additional teachers.

estimate of b uses estimated VA from other years and thereby understates the impact of a 1 unit increase in true
VA on earnings. This leads us to understate the $267,000 gain. Second, if true VA is mean reverting, deselecting
teachers based on their current VA will yield smaller gains in subsequent years, because some of the low VA teachers
improve over time. An interesting direction for future research is to estimate the process that VA follows and then
identify the expected gains from selecting teachers based on their true VA over various horizons.
62The rate of attrition bears little or no relation to VA, consistent with the findings of Boyd et al. (2009).
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One important caveat to these calculations is that they assume that teacher effectiveness µj

does not vary with classroom characteristics. Our estimates of VA only identify the component of

teacher quality that is orthogonal to lagged test scores and the other characteristics that we control

for to account for sorting. That is, teachers are evaluated relative to the average quality of teachers

with similar students, not relative to the population. Thus, while we can predict the effects of

selecting teachers among those assigned to a sub-population of similar students, we cannot predict

the impacts of policies that reassign teachers to randomly selected classrooms from the population

(Rubin, Stuart, and Zanutto 2004). This is a limitation in all existing value-added measures of

teacher quality and could have significant implications for their use if teaching quality interacts

heavily with student attributes. Lockwood and McCaffrey (2009) argue that such interactions are

small relative to the overall variation in teacher VA. In addition, our estimates based on teaching

staff changes suggest that VA is relatively stable as teachers switch to different grades or schools.

Nevertheless, further work is needed on this issue if a policymaker is considering reassigning teachers

across classrooms and seeks a global ranking of their relative quality.

7 Conclusion

This paper has presented evidence that existing value-added measures are informative about teach-

ers’long-term impacts. However, two important issues must be resolved before one can determine

whether VA should be used to evaluate teachers. First, using VA measures in high-stakes eval-

uations could induce responses such as teaching to the test or cheating, eroding the signal in VA

measures. This question can be addressed by testing whether VA measures from a high stakes

testing environment provide as good of a proxy for long-term impacts as they do in our data.63 If

not, one may need to develop metrics that are more robust to such responses, as in Barlevy and

Neal (2012). Districts may also be able to use data on the persistence of test score gains to identify

test manipulation, as in Jacob and Levitt (2003), and thereby develop a more robust estimate of

VA. Second, one must weigh the cost of errors in personnel decisions against the mean benefits

from improving teacher value-added. We quantified mean earnings gains from selecting teachers

on VA but did not quantify the costs imposed on teachers or schools from the turnover generated

by such policies.

63As we noted above, even in the low-stakes regime we study, some teachers in the upper tail of the VA distribution
have test score impacts consistent with test manipulation. If such behavior becomes more prevalent when VA
is actually used to evaluate teachers, the predictive content of VA as a measure of true teacher quality could be
compromised.
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Whether or not VA should be used as a policy tool, our results suggest that parents would

place great value on having their child in the classroom of a high value-added teacher. Consider

a teacher whose true VA is 1 SD above the median who is contemplating leaving a school. Each

child would gain approximately $25,000 in total (undiscounted) lifetime earnings from having this

teacher instead of the median teacher. With an annual discount rate of 5%, the parents of a

classroom of average size should be willing to pool resources and pay this teacher approximately

$130,000 ($4,600 per parent) to stay and teach their children during the next school year. Our

analysis of teacher entry and exit directly confirms that retaining such a high-VA teacher would

improve students’outcomes.

While these calculations show that good teachers have great value, they do not by themselves

have implications for optimal teacher salaries or merit pay policies. The most important lesson of

this study is that finding policies to raise the quality of teaching —whether via the use of value-added

measures, changes in salary structure, or teacher training —is likely to have substantial economic

and social benefits in the long run.
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Appendix A: Matching Algorithm

We follow the matching algorithm developed in Chetty et al. (2011) to link the school district
data to tax records. The algorithm was designed to match as many records as possible using
variables that are not contingent on ex post outcomes. Date of birth, gender, and last name
in the tax data are populated by the Social Security Administration using information that is
not contingent on ex post outcomes. First name and ZIP code in tax data are contingent on
observing some ex post outcome. First name data derive from information returns, which are
typically generated after an adult outcome like employment (W-2 forms), college attendance (1098-
T forms), and mortgage interest payment (1098 forms). The ZIP code on the claiming parent’s
1040 return is typically from 1996 and is thus contingent on the ex post outcome of the student
not having moved far from her elementary school for most students in our analysis sample.

Chetty et al. (2011) show that the match algorithm outlined below yields accurate matches
for approximately 99% of cases in a school district sample that can be matched on social security
number. Note that identifiers were used solely for the matching procedure. After the match was
completed, the data were de-identified (i.e., individual identifiers such as names were stripped) and
the statistical analysis was conducted using the de-identified dataset.

Step 1 [Date of Birth, Gender, Last Name]: We begin by matching each individual from the
school-district data to Social Security Administration (SSA) records. We match individuals based
on exact date of birth, gender, and the first four characters of last name. We only attempt to
match individuals for which the school records include a valid date of birth, gender, and at least one
valid last name. SSA records all last names ever associated in their records with a given individual;
in addition, there are as many as three last names for each individual from the school files. We
keep a potential match if any of these three last names match any of the last names present in the
SSA file.

Step 2 [Rule Out on First Name]: We next check the first name (or names) of individuals from
the school records against information from W2 and other information forms present in the tax
records. Since these files reflect economic activity usually after the completion of school, we use
this information in Step 2 only to “rule out”possible matches in order to minimize selection bias.
In particular, we disqualify potential matches if none of the first names on the information returns
match any of the first names in the school data. As before, we use only the first four characters of
a first name. For many potential matches, we find no first name information in the tax information
records; at this step we retain these potential matches. After removing potential matches that are
mismatched on first name, we isolate students for whom only one potential match remains in the
tax records. We declare such cases a match and remove them from the match pool. We classify
the match quality (MQ) of matches identified at this stage as MQ = 1.

Step 3 [Dependent ZIP code]: For each potential match that remains, we find the household
that claimed the individual as a dependent (if the individual was claimed at all) in each year. We
then match the location of the claiming household, identified by the 5-digit ZIP code, to the home
address ZIP code recorded in the school files. We classify potential matches based on the best ZIP
code match across all years using the following tiers: exact match, match within 10 (e.g., 02139
and 02146 would qualify as a match), match within 100, and non-match. We retain potential
matches only in the highest available tier of ZIP code match quality. For example, suppose there
are 5 potential matches for a given individual, and that there are no exact matches on ZIP code,
two matches within 10, two matches within 100, and one non-match. We would retain only the
two that matched within 10. After this procedure, we isolate students for whom only one potential
match remains in the tax records. We declare such cases a match and remove them from the match
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pool. We classify the match quality of matches identified at this stage as MQ = 2.
Step 4 [Place of Birth]: For each potential match that remains, we match the state of birth

from the school records with the state of birth as identified in SSA records. We classify potential
matches into three groups: state of birth matches, state of birth does not match but the SSA state
is the state where the school district is, and mismatches. Note that we include the second category
primarily to account for the immigrants in the school data for whom the recorded place of birth is
outside the country. For such children, the SSA state-of-birth corresponds to the state in which
they received the social security number, which is often the first state in which they lived after
coming to the country. We retain potential matches only in the best available tier of place-of-birth
match quality. We then isolate students for whom only one potential match remains in the tax
records. We declare such cases a match and remove them from the match pool. We classify the
match quality of matches identified at this stage as MQ = 3.

Step 5 [Rule In on First Name]: After exhausting other available information, we return to the
first name. To recall, in step 2 we retained potential matches that either matched on first name
or for which there was no first name available. In this step, we retain only potential matches that
match on first name, if such a potential match exists for a given student. We also use information
on first name present on 1040 forms filed by potential matches as adults to identify matches at this
stage. We then isolate students for whom only one potential match remains in the tax records.
We declare such cases a match and remove them from the match pool. We classify the match
quality of matches identified at this stage as MQ = 4.

Step 6 [Fuzzy Date-of Birth]: In previous work (Chetty et al. 2011), we found that 2-3% of
individuals had a reported date of birth that was incorrect. In some cases the date was incorrect
only by a few days; in others the month or year was off by one, or the transcriber transposed the
month and day. To account for this possibility, we take all individuals for whom no eligible matches
remained after step 2. Note that if any potential matches remained after step 2, then we would
either settle on a unique best match in the steps that follow or find multiple potential matches even
after step 5. We then repeat step 1, matching on gender, first four letters of last name, and fuzzy
date-of-birth. We define a fuzzy DOB match as one where the absolute value of the difference
between the DOB reported in the SSA and school data was in the set {1, 2, 3, 4, 59, 10, 18, 27} in
days, the set {1, 2} in months, or the set {1} in years. We then repeat steps 2 through 5 exactly as
above to find additional matches. We classify matches found using this fuzzy-DOB algorithm as
MQ = 5.X, where X is the corresponding MQ from the non-fuzzy DOB algorithm. For instance,
if we find a unique fuzzy-DOB match in step 3 using dependent ZIP codes, then MQ = 5.2.

The following table shows the distribution of match qualities for all student-test-score observa-
tions. In all, we match 89.2% of student-subject observations in the analysis sample. We match
90.0% of observations in classes for which we are able to estimate VA for the teacher. Unmatched
students are split roughly evenly among those for whom we found multiple matches and those for
whom we found no match.

57



Match Quality (MQ) Frequency Percent Cumulative Match Rate
1 3327727 55.63% 55.63%
2 1706138 28.52% 84.15%
3 146256 2.44% 86.59%
4 64615 1.08% 87.67%
5.1 84086 1.41% 89.08%
5.2 6450 0.11% 89.19%
5.3 747 0.01% 89.20%
5.4 248 0.00% 89.20%

Multiple Matches 304436 5.09%
No Matches 341433 5.71%

Appendix B: Identifying Teachers’Net Impacts

This appendix shows that the iterative method described in Section 6.1 recovers the net impacts
of teacher VA, β̃g, defined as the impact of raising teacher VA in grade g on earnings, holding fixed
VA in subsequent grades.

We begin by estimating the following equations using OLS for g ∈ [4, 8]:

Yi = βgµ̂j(i,g) + fµ1g(Ai,t−1) + fµ2g(ej(i,g,t)) + φµ1gXigt + φµ2gX̄c(i,g,t) + εµigt(12)

µ̂j(i,g′) = ρgg′ µ̂j(i,g) + fg
′

1g(Ai,t−1) + fg
′

2 (ej(i,g,t)) + φg
′

1gXigt + φg
′

2gX̄c(i,g,t) + ηitgg′ ∀g′ > g(13)

The first set of equations estimates the reduced form impact of teacher VA in grade g on earnings.
The second set of equations estimates the impact of teacher VA in grade g on teacher VA in future
grade g′. Denote by X the vector of controls in equations (12) and (13). Note that identification
of the tracking coeffi cients ρgg′ using (6.1) requires the following variant of Assumption 2:

Assumption 2A Teacher value-added in grade g is orthogonal to unobserved determinants of
future teacher value-added:

Cov
(
µ̂j(i,g), ηitgg′ | X

)
= 0.

After estimating
{
βg
}
and

{
ρgg′

}
, we recover the net impacts β̃g as follows. Under our definition

of β̃g, earnings can be written as
∑G

g=1 β̃gµ̂j(i,g) + εµi . Substituting this definition of Yi into (12)

and noting that ρgg′ = Cov
(
µ̂j(i,g′), µ̂j(i,g) | X

)
/V ar

(
µ̂j(i,g) | X

)
yields

βg =
Cov

(∑G
g′=1 β̃g′ µ̂j(i,g′) + εYi , µ̂j(i,g) | X

)
V ar

(
µ̂j(i,g) | X

) =

G∑
g′=1

ρgg′ β̃g′ .

One implication of Assumption 2, the orthogonality condition needed to identify earnings impacts,
is that

Cov
(
µ̂j(i,g′), µ̂j(i,g) | X

)
= 0 for g′ < g

since past teacher quality µ̂j(i,g′) is one component of the error term εµigt in (12). Combined with

58



the fact that ρgg = 1 by definition, these equations imply that

βg = β̃g +

G∑
g′=g+1

ρgg′ β̃g′ ∀g < G

βG = β̃G.

Rearranging this triangular set of equations yields the following system of equations, which can be
solved by iterating backwards as in Section 6.1:

β̃G = βG(14)

β̃g = βg −
G∑

g′=g+1

ρgg′ β̃g′ ∀g < G.
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FIGURE 1
Effects of Teacher Value-Added on Actual, Predicted, and Lagged Scores
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Notes: These figures plot student scores, scaled in standard deviation units, vs. our leave-year-out measure of teacher
value-added, which is also scaled in units of student test score standard deviations. The figures are drawn using the linked
analysis sample described in section 3.3, which includes only students who would graduate high school in or before 2008 if
progressing at a normal pace. There is one observation for each student-subject-school year. Teacher value-added is
estimated using data from classes taught by the same teacher in other years, following the procedure in Sections 2.2 and
4.1 and using the control vector in model 1 of Table 3. In Panel A, the y variable is actual end-of-grade student scores; in
Panel B, it is the predicted score based on parent characteristics; and in Panel C, it is the score two years before in the same
subject. Predicted score is based on the fitted values from a regression of test score on mother’s age at child’s birth,
indicators for parent’s 401(k) contributions and home ownership, and an indicator for the parent’s marital status interacted
with a quartic in parent’s household income (see Section 4.3 for details). All three figures control for the following
classroom-level variables: school year and grade dummies, class-type indicators (honors, remedial), class size, and cubics
in class and school-grade means of lagged test scores in math and English each interacted with grade. They also control for
class and school-year means of the following student characteristics: ethnicity, gender, age, lagged suspensions, lagged
absences, and indicators for grade repetition, special education, limited English. We use this baseline control vector in all
subsequent figures unless otherwise noted. To construct each binned scatter plot, we first regress both the y- and x-axis
variable on the control vector and calculate residuals. We then group the observations into twenty equal-sized (5
percentile-point) bins based on the x-axis residual and scatter the means of the y- and x-axis residuals within each bin. The
solid line shows the best linear fit estimated on the underlying micro data estimated using OLS. The coefficients show the
estimated slope of the best-fit line, with standard errors clustered at the school-cohort level reported in parentheses.



FIGURE 2
Impacts of Teacher Value-Added on Lagged, Current, and Future Test Scores
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Notes: This figure shows the effect of teacher value-added in year t  0 on student scores from four years prior to
assignment to the teacher of interest to four years after. The figure is drawn using the linked analysis sample described in
section 3.3, which includes only students who would graduate high school in or before 2008 if progressing at a normal
pace. There is one observation for each student-subject-school year. Each point shows the coefficient estimate from a
separate OLS regression of test scores (including all available grades and subjects) on teacher value-added and the baseline
control vector used in Figure 1. The points for t  −1 represent placebo tests for selection on observables, while points for
t  0 show the persistence of teachers’ impacts on test scores. The point at t  0 corresponds to the regression coefficient
in Panel A of Figure 1. The point at t  −1 is equal to zero by construction, because we control for lagged test scores.
Teacher value-added is estimated using data from classes taught by the same teacher in other years, following the
procedure in Sections 2.2 and 4.1 and using the control vector in model 1 of Table 3. The coefficients from the regressions
along with their associated standard errors are reported in Appendix Table 9.



FIGURE 3
Impacts of Teacher Entry and Exit on Average Test Scores by Cohort
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c) Low Value-Added Teacher Entry
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Notes: These figures plot event studies of current scores (solid line) and prior-year scores (dashed line) by cohort as
teachers enter or leave a school-grade-subject cell in year t  0. Panels A and B analyze the entry and exit of a high-VA
teacher (teachers with VA in the top 5% of the distribution); Panels C and D analyze the entry and exit of a low-VA
(bottom 5%) teacher. All panels are plotted using a dataset containing school x grade x subject x year means from the
linked analysis sample described in section 3.3. To construct each panel, we first estimate each teacher’s VA using data
from classes taught outside the years t ∈ −3,2. We then plot mean scores in the subject taught by the teacher for
students in the entire school-grade-subject cell in the years before and after the arrival or departure of the teacher. We
remove year fixed effects by regressing the y variable on year indicators and plotting the mean of the residuals, adding
back the sample mean of each variable to facilitate interpretation of the scale. Each point therefore shows the mean score
of a different cohort of students within a single school-grade-subject cell, removing secular time trends. Each panel reports
the change in mean score gains (mean scores minus mean lag scores) from t  −1 to t  0. We also report the change in
mean teacher VA multiplied by 0.861, the cross-class coefficient of score on VA (Column 1 of Table 2). We multiply the
change in mean VA by this factor to forecast the change in test scores implied by the change in mean VA. We report p
values from F tests of the hypotheses that the change in score gains from t  −1 to t  0 equals 0 and equals the change in
mean VA times 0.861. Mean teacher VA is calculated using a student-weighted average, imputing the sample mean for
teachers who do not have data outside the t ∈ −3,2 window.



FIGURE 4
Effect of Changes in Teaching Staff on Scores Across Cohorts
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Notes: This figure plots changes in average test scores across cohorts versus changes in average teacher VA across cohorts,
generalizing the event study in Figure 3 to include all changes in teaching staff. All panels are plotted using a dataset
containing school x grade x subject x year means from the linked analysis sample described in section 3.3. We calculate
changes in mean teacher VA across consecutive cohorts within a school-grade-subject cell as follows. First, we calculate
teacher value-added for each teacher in a school-grade-subject cell in each adjacent pair of school years using information
excluding those two years. We then calculate mean value-added across all teachers, weighting by the number of students
they teach and imputing the sample mean VA for those for teachers for whom we have no estimate of VA. Finally, we
compute the difference in mean teacher VA (year t minus year t − 1) to obtain the x axis variable. The y axis variables are
defined by calculating the change in the mean of the dependent variable (year t minus year t-1) within a
school-grade-subject cell. In Panel A, the y-axis variable is the change in end-of-grade scores across cohorts in the
relevant subject. In Panel B, the y-axis variable is the change in predicted test scores based on parent characteristics,
defined as Figure 1b. In Panels C and D, the y-axis variable is the change in test scores in the other subject (e.g. math
scores when analyzing English teachers’ VA) for observations in elementary and middle school, respectively. To construct
each binned scatter plot, we first regress both the y- and x-axis variable on year dummies and calculate residuals. We then
group the observations into twenty equal-sized (5 percentile-point) bins based on the x-axis residual and scatter the means
of the y- and x-axis residuals within each bin. The solid line shows the best linear fit estimated on the underlying
school-grade-subject-year data estimated using an unweighted OLS regression. The coefficients show the estimated slope
of the best-fit line, with standard errors clustered at the school-cohort level reported in parentheses.



FIGURE 5
Effects of Teacher Value-Added on College Attendance
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b) College Quality at Age 20
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c) Impact of Teacher Value-Added on College Attendance by Age

Notes: Panel A plots the relationship between teacher VA and college attendance rates at age 20. College attendance is
measured by receipt of a 1098-T form in the year during which a student turned 20. The figure is drawn using the linked
analysis sample described in section 3.3, which includes only students who would graduate high school in or before 2008 if
progressing at a normal pace. There is one observation for each student-subject-school year. Teacher value-added is
estimated using data from classes taught by a teacher in other years, following the procedure in Sections 2.2 and 4.1 and
using the control vector in model 1 of Table 3. To construct the binned scatter plot, we first regress both the x- and y-
variables on the baseline control vector used in Figure 1 and calculate residuals. We then group the observations into
twenty equal-sized (5 percentile-point) bins based on the residual of the x variable and scatter the means of the y- and
x-variable residuals within each bin, adding back the sample means of both variables to facilitate interpretation of the scale.
The solid line shows the best linear fit estimated on the underlying micro data estimated using OLS. The coefficient shows
the estimated slope of the best-fit line, with the standard error clustered at the school-cohort level reported in parentheses.
Panel B replicates Panel A, changing the y variable to our earnings-based index of college quality at age 20. College
quality is constructed using the average wage earnings at age 30 in 2009 for all students attending a given college at age 20
in 1999. For individuals who did not attend college, we calculate mean wage earnings at age 30 in 2009 for all individuals
in the U.S. aged 20 in 1999 who did not attend any college. Panel C replicates the regression specification in Panel A and
plots the resulting coefficients on college attendance from ages from 18 to 27. Each point represents the coefficient
estimate on teacher value-added from a separate regression. The dashed lines show the boundaries of the 95% confidence
intervals for the effect of value-added on college attendance at each age.



FIGURE 6
Effect of Teacher Value-Added on Earnings at Age 28
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Notes: This figure plots the effect of teacher value-added on wage earnings at age 28, computed using data from W-2
forms issued by employers. The figure is drawn using the linked analysis sample described in section 3.3, which includes
only students who would graduate high school in or before 2008 if progressing at a normal pace. There is one observation
for each student-subject-school year. Teacher value-added is estimated using data from classes taught by a teacher in other
years, following the procedure in Sections 2.2 and 4.1 and using the control vector in model 1 of Table 3. To construct the
binned scatter plot, we first regress both earnings and value-added on the baseline control vector used in Figure 1 and
calculate residuals. We then group the observations into twenty equal-sized (5 percentile-point) bins based on the
value-added residual and scatter the means of the earnings and value-added residuals within each bin, adding back the
sample means of earnings and value-added to facilitate interpretation of the scale. The solid line shows the best linear fit
estimated on the underlying micro data estimated using OLS. The coefficient shows the estimated slope of the best-fit line,
with the standard error clustered at the school-cohort level reported in parentheses.



FIGURE 7
Effect of Teacher Value-Added on Earnings by Age
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Notes: This figure shows the effect of a 1 SD increase in teacher value-added on earnings at each age, expressed as a
percentage of mean earnings at that age. The figure is drawn using the linked analysis sample described in section 3.3,
which includes only students who would graduate high school in or before 2008 if progressing at a normal pace. There is
one observation for each student-subject-school year. To construct the figure, we first run a separate OLS regression of
earnings at each age (using all observations for which the necessary data are available) on teacher value-added, following
exactly the specification used in Figure 7 . We then divide this regression coefficient by 10 to obtain an estimate of the
impact of a 1 SD increase in teacher VA on earnings. Finally, we divide the rescaled coefficient by the mean earnings
level in the estimation sample at each age to obtain the percentage impact of a 1 SD increase in VA on earnings by age.
Panel A shows the results for the full sample. The dashed lines represent the 95% confidence interval, computed using
standard errors clustered at the school-cohort level. Panel B replicates Panel A, splitting the sample into two based on the
average college attendance rate at each school. The mean school-average college attendance rate is 35%. The solid series
includes schools with attendance rates below 35% while the dashed series includes schools with attendance rates above
35%. The coefficients and standard errors underlying these figures are reported in Appendix Table 10.



FIGURE 8
Effects of Teacher Value-Added on Other Outcomes in Adulthood
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b) Neighborhood Quality at Age 25
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Notes: These figures plot the effect of teacher value-added on teenage births (for females only) and neighborhood quality.
We define a teenage birth as an individual claiming a dependent who was born when she was between the ages of 13 and
19 on the 1040 tax form in any year in our sample (see Section 3.2 for details). We define neighborhood quality as the
fraction of residents with a college degree in the ZIP code where the individual resides. The figures are drawn using the
linked analysis sample described in section 3.3, which includes only students who would graduate high school in or before
2008 if progressing at a normal pace. There is one observation for each student-subject-school year. Teacher value-added
is estimated using data from classes taught by a teacher in other years, following the procedure in Sections 2.2 and 4.1 and
using the control vector in model 1 of Table 3. To construct each binned scatter plot, we first regress both the y- and x-
axis variables on the baseline control vector used in Figure 1 and calculate residuals. We then group the observations into
twenty equal-sized (5 percentile-point) bins based on the x-axis residual and scatter the means of the y- and x-axis
residuals within each bin, adding back the sample means of x- and y- axis variables to facilitate interpretation of the scales.
The solid line shows the best linear fit estimated on the underlying micro data estimated using OLS. The coefficients show
the estimated slopes of the best-fit line, with standard errors clustered at the school-cohort level reported in parentheses.



FIGURE 9
Impacts of Teacher Value-Added on College Quality by Grade
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Notes: This figure plots the impact of a 1 SD increase in teacher VA in each grade from 4-8 on our earnings-based index of
college quality (projected earnings at age 30 based on the college in which the student is enrolled at age 20). The figure is
drawn using the linked analysis sample described in section 3.3. The upper (circle) series shows the reduced-form effect of
improved teacher quality in each grade, including both the direct impact of the teacher on earnings and the indirect effect
through improved teacher quality in future years. Each point in this series represents the coefficient on teacher
value-added from a separate regression of college quality at age 20 on teacher VA for a single grade. We use the same
specification as in Figure 5c but limit the sample to cohorts who would have been in 4th grade during or after 1994 to
obtained a balanced sample across grades. The shaded area represents a 95% confidence interval, calculated based on
standard errors clustered by school-cohort. The lower (square) series plots the impact of teachers in each grade on college
quality netting out the impacts of increased future teacher quality. We net out the effects of future teachers using the
tracking coefficients reported in Appendix Table 13 and solving the system of equations in Section 6.1.



FIGURE 10
Earnings Impacts of Deselecting Low Value-Added Teachers
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Notes: This figure displays the present value of lifetime earnings gains for a single classroom of students from deselecting
teachers whose estimated value-added is in the bottom 5% of the distribution. The horizontal line shows the gain that
could be achieved by deselecting the bottom 5% of teachers based on their true VA j, measured noiselessly using an

infinite number of classes per teacher. The increasing series plots the feasible gains from deselection of the bottom 5% of
teachers when their VA is estimated based on the number of classes shown on the x axis, accounting for finite-sample error
in VA estimates. Appendix Table 14 lists the values that are plotted as well as undiscounted cumulative earnings gains,
which are approximately 5.5 times larger in magnitude. To obtain the values in the figure, we first calculate the present
value of average lifetime earnings per student using the cross-sectional life-cycle earnings profile for the U.S. population in
2007, discounting earnings back to age 12 using a 3% net discount rate (equivalent to a 5% discount rate with 2% wage
growth). Column 1 of Table 6 implies that a 1 SD increase in VA raises earnings by 0.9% at age 28. We assume that this
0.9% earnings gain remains constant over the life cycle and calculate the impacts of a 1 SD improvement in teacher quality
on mean lifetime earnings, averaging across English and math teachers. Finally, we multiply the mean lifetime earnings
impact by 28.3, the mean class size in our analysis sample.



APPENDIX FIGURE 1
Jacob and Levitt (2003) Proxy for Test Manipulation vs. Value-Added Estimates
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Notes: This figure plots the relationship between our leave-out-year measure of teacher value added and Jacob and Levitt’s
proxy for cheating. The figure is drawn using the linked analysis sample described in section 3.3. Teacher value-added is
estimated using data from classes taught by a teacher in other years, following the procedure in Sections 2.2 and 4.1 and
using the control vector in model 1 of Table 3. The y- axis variable is constructed as follows. Let ΔĀc,t  Āc,t−Āc,t−1

denote the change in mean test scores from year t − 1 to year t for students in classroom c. Let Rc,t denote the ordinal rank
of classroom c in ΔĀc,t among classrooms in its grade, subject, and school year and rc,t the ordinal rank as a fraction of the
total number of classrooms in that grade, subject, and school year. Jacob and Levitt’s (2003) measure for cheating in each
classroom is JLc rc,t

21 − rc,t1
2. Higher values of this proxy indicate very large test score gains followed by very

large test score losses, which Jacob and Levitt show is correlated with a higher chance of having suspicious patterns of
answers indicative of cheating. Following Jacob and Levitt, we define a classroom as an outlier if its value of JLc falls
within the top 5% of classrooms in the data. To construct the binned scatter plot, we group classrooms into percentiles
based on their teacher’s estimated value-added, ranking math and English classrooms separately. We then compute the
fraction of Jacob-Levitt outliers within each percentile bin and scatter these fractions vs. the percentiles of teacher VA.
Each point thus represents the fraction of Jacob-Levitt outliers at each subject-specific percentile of teacher VA, where VA
for each teacher is estimated using data from other years. The dashed vertical line depicts the (subject-specific) 98th
percentile of the value-added distribution. We exclude classrooms with estimated VA above this threshold in our baseline
specifications because they have much higher frequencies of Jacob-Levitt outliers. See Appendix Table 8 for results with
trimming at other cutoffs.



Variable Mean S.D. Observations
(1) (2) (3)

Student Data:
   Class size (not student-weighted) 28.3 5.8 211,371
   Number of subject-school years per student 6.14 3.16 974,686
   Teacher experience (years) 8.08 7.72 4,795,857
   Test score (SD) 0.12 0.91 5,312,179
   Female 50.3% 50.0% 5,336,267
   Age (years) 11.7 1.6 5,976,747
   Free lunch eligible (1999-2009) 76.0% 42.7% 2,660,384
   Minority (Black or Hispanic) 71.8% 45.0% 5,970,909
   English language learner 10.3% 30.4% 5,813,404
   Special education 3.4% 18.1% 5,813,404
   Repeating grade 2.7% 16.1% 5,680,954
   Student match rate to adult outcomes 89.2% 31.0% 5,982,136
   Student match rate to parent chars. 94.6% 22.5% 5,329,715
Adult Outcomes:
   Annual wage earnings at age 20 4,796 6,544 5,255,599
   Annual wage earnings at age 25 15,797 18,478 2,282,219
   Annual wage earnings at age 28 20,327 23,782 851,451
   In college at age 20 36.2% 48.1% 4,605,492
   In college at age 25 17.3% 37.8% 1,764,179
   College Quality at age 20 24,424 12,834 4,605,492
   Contribute to a 401(k) at age 25 14.8% 35.5% 2,282,219
   ZIP code % college graduates at age 25 13.2% 7.1% 1,919,115
   Had a child while a teenager (for women) 8.4% 27.8% 2,682,644
Parent Characteristics:
   Household income (child age 19-21) 35,476 31,080 4,396,239
   Ever owned a house (child age 19-21) 32.5% 46.8% 4,396,239
   Contributed to a 401k (child age 19-21) 25.1% 43.3% 4,396,239
   Ever married (child age 19-21) 42.1% 49.4% 4,396,239
   Age at child birth 27.6 7.4 4,917,740
   Predicted Score 0.16 0.26 4,669,069

TABLE 1
Summary Statistics for Linked Analysis Dataset

Notes: All statistics reported are for the linked analysis dataset described in section 3.3, which includes only students who would graduate high
school in or before 2008 if progressing at a normal pace. The sample has one observation per student-subject-school year. Student data are from
the administrative records of a large urban school district in the U.S. Adult outcomes and parent characteristics are from 1996-2010 federal income
tax data. All monetary values are expressed in real 2010 dollars. All ages refer to the age of an individual as of December 31 within a given year.
Teacher experience is the number of years of experience teaching in the school district. Test score is based on standardized scale scores, as
described in Section 3.1. Free lunch is an indicator for receiving free of reduced-price lunches. Earnings are total wage earnings reported on W-2
forms, available from 1999-2010; those who are matched to tax data but have no W-2 are coded as having zero earnings. College attendance is
measured by the receipt of a 1098-T form, available from 1999-2009. For a given college, “college quality” is defined as the average wage earnings
at age 30 in 2009 for the subset of the U.S. population enrolled in that college at age 20 in 1999. For individuals who do not attend college, college
quality is defined as the mean earnings at age 30 in 2009 of all individuals in the U.S. population not in college at age 20 in 1999. 401(k)
contributions are reported on W-2 forms. ZIP code of residence is taken from either the address reported on 1040 or W-2 forms; for individuals
without either in a given year, we impute location forward from the most recent non-missing observation. Percent college graduates in the ZIP code
is based on data from the 2000 Census. Teenage births are measured only for females, by the claiming of a dependent, at any time in our sample,
who was born when the claiming parent was between 13 and 19 years old. We link students to their parents by finding the earliest 1040 form from
1998-2010 on which the student is claimed as a dependent. We are unable to link 5.4% of matched students to their parents; the summary statistics
for parents exclude these observations. Parent income is average adjusted gross income during the three tax-years when a student is aged 19-21.
For parents who do not file, household income is defined as zero. Home ownership is measured by reporting mortgage interest payments on a 1040
or 1099 form. Marital status is measured by whether the claiming parent files a joint return while the child is between 19 and 21. Predicted score is
predicted from a regression of scores on parent characteristics using the estimating equation in Section 4.3.



Score in Predicted Score in Score in Score in Score in Score in Percent
Dep. Var.: year t  Score year t year t year t-2  year t  year t Matched

(SD) (SD) (SD) (SD) (SD) (SD) (SD) (%)
(1) (2) (3) (4) (5) (6) (7) (8)

Teacher VA 0.861 0.006 0.866 0.864 -0.002 0.803 0.804 0.160
(0.010) (0.004) (0.011) (0.011) (0.011) (0.011) (0.011) (0.280)
[82.68] [1.49] [75.62] [75.85] [-0.21] [72.74] [70.63] [0.562]

Pred. score 0.175
using par. chars. (0.012)

[62.70]
Year t-2 Score 0.521

(0.001)
[363.3]

Observations 3,721,120 2,877,502 2,877,502 2,877,502 2,771,865 2,771,865 2,771,865 4,018,504

TABLE 2
Tests for Balance Using Parent Characteristics and Lagged Scores

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by school-cohort
in parentheses and t-statistics in square brackets. The regressions are estimated on the linked analysis sample
described in section 3.3, which includes only students who would graduate high school in or before 2008 if
progressing at a normal pace. There is one observation for each student-subject-school year. Teacher VA is
scaled in units of student test score standard deviations. VA is estimated using data from classes taught by the
same teacher in other years, following the procedure in Sections 2.2 and 4.1 and using the control vector in model
1 of Table 3. In this and all subsequent tables, we exclude outlier observations with teacher VA in the top 2% of
the VA distribution unless otherwise noted. In columns 1, 3, 4, 6, and 7, the dependent variable is the student’s
test score in a given year and subject. In column 2, the dependent variable is the predicted value generated from a
regression of test score on mother's age at child's birth, indicators for parent's 401(k) contributions and home
ownership, and an indicator for the parent's marital status interacted with a quartic in parent's household income.
See Section 4.3 for details of the estimating equation for predicted scores. In column 5, the dependent variable is
the score two years earlier in the same subject. The dependent variable in column 8 is an indicator for being
matched to the tax data. The second independent variable in each of columns 4 and 7 is the same as the
dependent variables in columns 2 and 5, respectively. All specifications control for the following classroom-level
variables: school year and grade dummies, class-type indicators (honors, remedial), class size, and cubics in class
and school-grade means of lagged test scores in math and English each interacted with grade. They also control
for class and school-year means of the following student characteristics: ethnicity, gender, age, lagged
suspensions, lagged absences, and indicators for grade repetition, special education, limited English. We use this
baseline control vector in all subsequent tables unless otherwise noted.



(1) (2) (3) (4) (5) (6)

baseline
add parent 

chars.
add t-2 
scores

t-1 scores 
only

no 
controls

Quasi-Experimental 
Estimate of Bias

(1) baseline 1.000 3.1%
(7.6)

(2) add parent chars. 0.999 1.000 2.6%
(7.6)

(3) add t-2 scores 0.975 0.974 1.000 1.4%
(7.4)

(4) t-1 scores only 0.945 0.943 0.921 1.000 14.3%
(6.9)

(5) no controls 0.296 0.292 0.279 0.323 1.000 87.8%
(1.4)

Notes: Columns 1-5 of this table report correlations between teacher value-added estimates from five models,
each using a different control vector. The correlations are weighted by the number of years taught by each
teacher. The models are estimated on a constant subsample of 89,673 classrooms from the linked analysis
dataset for which the variables needed to estimate all five models are available. For each model, we estimate
student test score residuals using equation (3) using the relevant control vector and then implement the remaining
steps of the Empirical Bayes procedure in Section 2.2 identically. Model 1 uses the student- and class-level
control vector used to estimate value-added in our baseline specifications. This control vector includes a cubic
polynomial in prior-year scores in math and a cubic in prior-year scores in English interacted with the student's
grade level, dummies for teacher experience, as well as the following student-level controls: ethnicity, gender,
age, lagged suspensions and absences, and indicators for grade repetition, special education, limited English.
The control vector also includes the following classroom-level controls: class-type indicators (honors, remedial),
class size, cubics in class and school-grade means of lagged test scores in math and English each interacted with
grade, class and school-year means of all the student-level controls, and school year and grade dummies. Model
2 adds classroom-level means of the following parental characteristics to model 1: parent's age at child's birth,
mean parent household income, and indicators for whether the parent owned a house, invested in a 401k, or was
married while child was 19-21, and an indicator for whether no parent was found for the child in the tax data.
Model 3 adds a cubic in twice-lagged test scores in the same subject to model 1. Model 4 controls for only lagged
scores, using cubics in student's prior-year math and English scores interacted with grade level and cubics in the
mean prior-year math and English scores for the classroom and school-grade cell also interacted with grade level.
Model 5 includes no controls. In column 6, we estimate the degree of bias in the VA estimates produced by each
model using quasi-experimental changes in teaching staff as described in Section 4.4. To calculate the degree of
bias, we first estimate the effect of changes in mean VA on changes in test scores across cohorts using the
specification in Column 1 of Table 4. We then estimate the effect of differences in teacher VA across classrooms
on test scores, using the specification in Column 1 of Table 2 but with the control vector corresponding exactly to
that used to estimate the value-added model. Finally, we define the degree of bias as the percentage difference
between the cross-cohort and cross-class coefficients. Standard errors for the bias calculation are calculated as
the standard error of the coefficient in the cross-cohort regression divided by the cross-class estimate; this
calculation ignores the error in the cross-class estimate, which is negligible, as shown in Column 1 of Table 2.

TABLE 3
Sensitivity of Teacher Value-Added Measures to Controls



D Score D Predicted D Other Subj. D Other Subj.
Dependent Variable: Score Score Score

(SD) (SD) (SD) (SD)
(1) (2) (3) (4)

Changes in mean teacher 0.843 0.008 0.694 0.005
    VA across cohorts (0.053) (0.011) (0.058) (0.105)

[15.95] [0.74] [11.90] [0.04]

Grades 4 to 8 4 to 8 Elem. Sch. Middle Sch.

24,887 25,073 20,052 4,651Number of school x grade x 
subject x year cells

TABLE 4

Notes: Each column reports coefficients from an unweighted OLS regression, with standard errors
clustered by school-cohort in parentheses and t-statistics in square brackets. The regressions are
estimated on a dataset containing school x grade x subject x year means from the linked analysis sample
described in section 3.3. We calculate changes in mean teacher VA across consecutive cohorts within a
school-grade-subject cell as follows. First, we calculate teacher value-added for each teacher in a school-
grade-subject cell in each adjacent pair of school years using information excluding those two years. We
then calculate mean value-added across all teachers, weighting by the number of students they teach
and imputing the sample mean VA for those for teachers for whom we have no estimate of VA. Finally,
we compute the difference in mean teacher VA (year t minus year t-1) to obtain the independent variable.
We do not exclude teachers whose estimated VA is in the top 2% of the distribution when computing
mean VA. The dependent variables are defined by calculating the change in the mean of the dependent
variable (year t minus year t-1) within a school-grade-subject cell. In column 1, the dependent variable is
the change in mean scores in the corresponding subject. In column 2, it is the change in the predicted
score, constructed as described in the notes to Table 2. In Columns 3 and 4, the dependent variable is
the change in the score in the other subject (e.g. math scores for English teachers). Column 3 restricts
the sample to elementary schools, where math and English are taught by the same teacher; column 4
restricts the sample to middle schools, where different teachers teach the two subjects. All specifications
include no controls except year fixed effects.

Impacts of Quasi-Experimental Changes in Teaching Staff on Test Scores



Pred. Changes in College Changes in High
Dep. Var.: College at College Age 20 Coll. Quality Age 20 Coll. Quality Coll. College

Age 20 at Age 20 Attendance at Age 20  Quality at Age 20 at Age 25

(%) (%) (%) ($) ($) (%) (%)
(1) (2) (3) (4) (5) (6) (7)

Teacher VA 4.917 0.463 1,644 3.588 2.752
(0.646) (0.261) (173) (0.612) (0.697)

6.101 1,319
(2.094) (539)

Controls x x x x x

Source of Variation X-Class X-Class X-Cohort X-Class X-Cohort X-Class X-Class

Observations 3,095,822 3,097,322 25,073 3,095,822 24,296 3,095,822 985,500

Mean of Dep. Var. 37.8 37.8 35.9 24,815 24,293 19.8 18.1

TABLE 5
Impacts of Teacher Value-Added on College Attendance

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by school-cohort
in parentheses. The regressions are estimated on the linked analysis sample described in section 3.3, which
includes only students who would graduate high school in or before 2008 if progressing at a normal pace.
Columns 1, 2, 4, 6, and 7 use cross-class variation, while columns 3 and 5 use cross-cohort variation. For
specifications that use cross-class variation, teacher value-added is estimated using data from classes taught by a
teacher in other years, following the procedure in Sections 2.2 and 4.1 and using the baseline control vector in
model 1 of Table 3. The dependent variable in column 1 is an indicator for college attendance at age 20. The
dependent variable in column 2 is the predicted value generated from a regression of college attendance at age 20 
on parent characteristics, using the same specification as for predicted score described in the notes to Table 2.
The dependent variable in column 4 is the earnings-based index of college quality, defined in the notes to Table 1.
The dependent variable in column 6 is an indicator for attending a college whose quality is greater than the median
college quality among those attending college, which is $39,972. The dependent variable in column 7 is an
indicator for college attendance at age 25. All cross-class regressions include the baseline class-level control
vector used in Table 2. For the specifications that exploit cross-cohort variation in columns 3 and 5, we use
changes in mean teacher value-added as the main independent variable, defined exactly as in Table 4. The
dependent variables in Columns 3 and 5 are changes in mean college attendance and quality across consecutive
cohorts within a school-grade-subject cell.  Columns 3 and 5 include no controls except year fixed effects.

Changes in mean 
VA across cohorts



Wage Wage Wage 
Earnings Earnings Growth College at College at Growth Growth

Dep. Var.: at Age 28 at Age 30 Ages 22-28 Age 25 Age 25 Ages 22-28 Ages 22-28

($) ($) ($) (%) (%) ($) ($)
(1) (2) (3) (4) (5) (6) (7)

Teacher VA 1,815 2,058 1,802 0.526 4.728 1,403 2,838
(729) (1953) (636) (0.789) (1.152) (661) (1,118)

Observations 368,427 61,639 368,405 528,065 457,435 201,933 166,472

Schools All All All Low Coll. High Coll. Low Coll. High Coll.

Mean of Dep. Var. 20,912 22,347 14,039 14.30 22.43 10,159 18,744

TABLE 6
Impacts of Teacher Value-Added on Earnings

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by school-
cohort in parentheses. The regressions are estimated on the linked analysis sample described in section 3.3,
which includes only students who would graduate high school in or before 2008 if progressing at a normal pace.
There is one observation for each student-subject-school year. Teacher value-added is estimated using data
from classes taught by a teacher in other years, following the procedure in Sections 2.2 and 4.1 and using the
control vector in model 1 of Table 3. The dependent variable in columns 1 and 2 are the individual's wage
earnings reported on W-2 forms at ages 28 and 30, respectively. The dependent variable in columns 3, 6, and
7 is the change in wage earnings between ages 22 and 28. The dependent variable in columns 4 and 5 is an
indicator for attending college at age 25. All regressions exploit variation across classrooms and include the
baseline class-level control vector used in Table 2. Columns 1-3 use the entire analysis sample. In columns 4-
7, we split the sample into two based on the average college attendance rate at each school.  The mean school-
average college attendance rate is 35%. Columns 4 and 6 use schools with attendance rates below 35% while
columns 5 and 7 use schools with attendance rates above 35%.



Percent College Percent College
Teenage Grads in ZIP Grads in ZIP 401(k) 401(k) 

Dep. Var.: Birth at Age 25 at Age 28 at Age 25 at Age 25

(%) (%) (%) (%) (%)
(1) (2) (3) (4) (5)

Value-Added -0.991 0.628 1.439 1.885 -1.780
(0.353) (0.194) (0.310) (0.680) (0.987)

Observations 1,826,742 1,168,965 310,638 725,140 646,955

Schools All All All Low Coll. High Coll.

Mean of Dep. Var. 7.9 13.3 13.6 12.1 19.2

TABLE 7
Impacts of Teacher Value-Added on Other Outcomes

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by
school-cohort in parentheses. The regressions are estimated on the linked analysis sample
described in section 3.3, which includes only students who would graduate high school in or before
2008 if progressing at a normal pace. There is one observation for each student-subject-school year.
Teacher value-added is estimated using data from classes taught by a teacher in other years,
following the procedure in Sections 2.2 and 4.1 and using the control vector in model 1 of Table 3.
The dependent variable in column 1 is an indicator for having a teenage birth, defined as in Table 1.
The dependent variable in columns 2 and 3 is the fraction of residents in an individual’s zip code of
residence at ages 25 and 28 with a college degree or higher, based on data from the 2000 Census.
ZIP code is obtained from either 1040 or W-2 forms filed in the current year or imputed from past
years for non-filers. The dependent variable in columns 4 and 5 is an indicator for whether an
individual made a contribution to a 401(k) plan at age 25. All regressions exploit variation across
classrooms and include the baseline class-level control vector used in Table 2. Columns 1-3 use the
entire analysis sample. In columns 4 and 5, we split the sample into two based on the average
college attendance rate at each school. The mean school-average college attendance rate is 35%.
Columns 4 and 6 use schools with attendance rates below 35% while columns 5 and 7 use schools
with attendance rates above 35%.



Girls Boys Low Income High Income Minority Non-Minority

(1) (2) (3) (4) (5) (6)

Teacher VA 1,903 1,386 1,227 2,087 1,302 2,421
(211) (203) (174) (245) (154) (375)

Mean of Dep. Var. 25,509 24,106 21,950 27,926 21,925 31,628

Teacher VA 0.856 0.863 0.843 0.865 0.846 0.889
(0.012) (0.013) (0.014) (0.013) (0.012) (0.018)

Mean of Dep. Var. 0.191 0.161 -0.010 0.324 -0.037 0.663

(1) (2) (3) (4) (5) (6)

Math Teacher VA 1095 638 1,648 1,374
(176) (219) (357) (347)

English Teacher VA 1,901 1,281 2,896 2,543
(303) (376) (586) (574)

Notes: Each cell reports a coefficient from a separate OLS regression of an outcome on teacher value-added, with
standard errors clustered by school-cohort in parentheses. The regressions are estimated on the linked analysis
sample described in section 3.3, which includes only students who would graduate high school in or before 2008 if
progressing at a normal pace. Teacher value-added is estimated using data from classes taught by a teacher in
other years, following the procedure in Sections 2.2 and 4.1 and using the control vector in model 1 of Table 3. All
regressions exploit variation across classrooms and include the baseline class-level control vector used in Table 2.
In Panel A, there is one observation for each student-subject-school year; in Panel B, the data are reshaped so that
both subjects (math and English) are in the same row, with one observation for each student-school year. The
dependent variable in the top half of Panel A and in Panel B is the earnings-based index of college quality (see
Table 1 for details). The dependent variable in the second half of Panel A is the student's test score. In Panel A, we
split the sample in columns 1 and 2 between boys and girls. We split the sample in columns 3 and 4 based on
whether a student’s parental income is higher or lower than median in sample, which is $26,961. We split the
sample in columns 5 and 6 based on whether a student belongs to an ethnic minority (Black or Hispanic). In Panel
B, we split the sample into elementary schools (schools where the student is taught by the same teacher for both
math and English) and middle schools (which have different teachers for each subject). All specifications in Panel B
control for the baseline class-level variables described in Table 2 in both the student's math and English classrooms.

Dependent Variable: College Quality at Age 20 ($)

Dependent Variable: Test Score (SD)

TABLE 8
Heterogeneity in Impacts of Teacher Value-Added

Elementary School Middle School

Dependent Variable: College Quality at Age 20 ($)

Panel A: Impacts by Demographic Group

Panel B: Impacts by Subject



Matched 
to Tax In college Earnings Parent

Student Subject Year Grade Class Teacher Test Score  Data? at Age 20? at Age 28 Income
…

Bob Math 1992 4 1 Jones 0.5 1 1 $27K $95K
Bob English 1992 4 1 Jones -0.3 1 1 $27K $95K
Bob Math 1993 5 2 Smith 0.9 1 1 $27K $95K
Bob English 1993 5 2 Smith 0.1 1 1 $27K $95K
Bob Math 1994 6 3 Harris 1.5 1 1 $27K $95K
Bob English 1994 6 4 Adams 0.5 1 1 $27K $95K
Nancy Math 2002 3 5 Daniels 0.4 0 . .
Nancy English 2002 3 5 Daniels 0.2 0 . .
Nancy Math 2003 4 6 Jones -0.1 0 . .
Nancy English 2003 4 6 Jones 0.1 0 . .

…

APPENDIX TABLE 1
Structure of Linked Analysis Dataset

Notes: This table illustrates the structure of the analysis dataset, which combines information from the school
district database and the tax data. The linked analysis data includes only students who would graduate high
school in or before 2008 if progressing at a normal pace. There is one row for each student-subject-school
year, with 5,928,136 rows in total. Individuals who were not linked to the tax data have missing data on adult
outcomes and parent characteristics. The values in this table are not real data and for illustrative purposes
only.  



Variable Mean S.D. Observations
(1) (2) (3)

   Class size (not student-weighted) 27.5 5.1 318,812
   Number of subject-school years per student 5.58 2.98 1,375,552
   Teacher Experience (years) 7.3 7.3 7,675,495
   Test score (SD) 0.17 0.88 7,675,495
   Female 50.8% 50.0 7,675,288
   Age (years) 11.4 1.5 7,675,282
   Free lunch eligible (1999-2009) 79.6% 40.3% 5,046,441
   Minority (Black or Hispanic) 71.6% 45.1% 7,672,677
   English language learner 5.1% 22% 7,675,495
   Special education 1.9% 13.7% 7,675,495
   Repeating grade 1.7% 13.0% 7,675,495

APPENDIX TABLE 2
Summary Statistics for School District Data Used to Estimate Value-Added

Notes: Statistics reported are for the set of observations used to estimate teacher value-added. These are
observations from the full school district dataset spanning 1991-2009 described in section 3.1 that have
information on test scores, teachers, and all the control variables (such as lagged test scores) needed to
estimate the baseline value-added model in Table 3. We exclude observations from classrooms that have
fewer than 7 students with the necessary information to estimate value-added. The sample has one
observation per student-subject-school year. See notes to Table 1 for definitions of variable and additional
details.



Dep. Var.: Earnings at College at College Quality Teenage Percent College Grads
Age 28 Age 20 at Age 20 Birth in ZIP at Age 25

($) (%) ($) (%) (%)
(1) (3) (2) (4) (5)

No Controls 7,601 18.33 6,030 -3.84 1.85
(28) (0.02) (6) (0.02) (0.01)

With Controls 2,539 5.66 2,009 -1.03 0.37
(76) (0.05) (13) (0.04) (0.01)

Math 2,813 5.97 2,131 -0.88 0.34
Full Controls (104) (0.07) (18) (0.06) (0.02)

English 2,194 5.27 1,843 -1.21 0.38
Full Controls (112) (0.07) (18) (0.06) (0.02)

Mean of Dep. Var. 20,867 37.2 24,678 8.25 13.2

APPENDIX TABLE 3
Cross-Sectional Correlations Between Outcomes in Adulthood and Test Scores

Notes: Each cell reports coefficients from a separate OLS regression of an outcome in adulthood on test
scores measured in standard deviation units, with standard errors reported in parentheses. The
regressions are estimated on the linked analysis sample described in section 3.3, which includes only
students who would graduate high school in or before 2008 if progressing at a normal pace. There is one
observation for each student-subject-school year, and we pool all subjects and grades in estimating these
regressions. The dependent variable is wage earnings at age 28 in column 1, an indicator for attending
college at age 20 in column 2, our earnings-based index of college quality in column 3, an indicator for
having a teenage birth (defined for females only) in column 4, and the fraction of residents in an
individual’s zip code of residence with a college degree or higher at age 25 in column 5. See notes to
Table 1 for definitions of these variables. The regressions in the first row include no controls. The
regressions in the second row include the full vector of student- and class-level controls used to estimate
the baseline value-added model, described in the notes to Table 3. The regressions in the third and
fourth row both include the full vector of controls and split the sample into math and English test score
observations.



20 21 22 23 24 25 26 27 28 29 30
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

No Controls 435 548 1,147 2,588 3,516 4,448 5,507 6,547 7,440 8,220 8,658
(15) (19) (24) (30) (36) (42) (49) (56) (63) (68) (72)

With Controls 178 168 354 942 1,282 1,499 1,753 2,151 2,545 2,901 3,092
(46) (60) (75) (94) (111) (130) (151) (172) (191) (208) (219)

Mean Earnings 4,093 5,443 6,986 9,216 11,413 13,811 16,456 19,316 21,961 23,477 23,856

Pct. Effect 4.4% 3.1% 5.1% 10.2% 11.2% 10.9% 10.7% 11.1% 11.6% 12.4% 13.0%
(with controls)

APPENDIX TABLE 4
Cross-Sectional Correlations Between Test Scores and Earnings by Age

Dependent Variable: Earnings ($)

Notes: Each cell in the first two rows reports coefficients from a separate OLS regression of earnings at a
given age on test scores measured in standard deviation units, with standard errors in parentheses. We
obtain data on earnings from W-2 forms and include individuals with no W-2's as observations with 0
earnings. The regressions are estimated on a constant subsample of the linked analysis sample, i.e. the
subset of students for whom data on earnings are available from ages 20-30. There is one observation for
each student-subject-school year, and we pool all subjects and grades in estimating these regressions. The
first row includes no controls; the second includes the full vector of student- and class-level controls used to
estimate the baseline value-added model, described in the notes to Table 3. Means of earnings for the
available estimation sample are shown in the third row. The last row divides the coefficient estimates from the
specification with controls by the mean earnings to obtain a percentage impact by age.



Earnings at College at College Quality Teenage
Dependent Variable: Age 28 at Age 20 Age 20 Birth

($) (%) ($) (%)
(1) (2) (3) (4)

Male 2,235 5.509 1,891 n/a
(112) (0.069) (18) n/a

[21,775 ] [0.34567] [24,268 ] n/a

Female 2,819 5.828 2,142 -1.028
(102) (0.073) (19) (0.040)

[20,889 ] [0.42067] [25,655] [0.07809]

Non-minority 2,496 5.560 2,911 -0.550
(172) (0.098) (30) (0.039)

[31,344] [0.60147] [32,288] [0.01948]

Minority 2,583 5.663 1,624 -1.246
(80) (0.058) (13) (0.053)

[17,285 ] [0.29627] [22,031] [0.10038]

Low Parent Inc. 2,592 5.209 1,571 -1.210
(108) (0.072) (17) (0.072)

[17,606] [0.27636] [22,011] [0.10384]

High Parent Inc. 2,614 5.951 2,414 -0.834
(118) (0.072) (19) (0.054)

[26,688] [0.49882] [28,038] [0.05974]

APPENDIX TABLE 5

Notes: Each cell reports coefficients from a separate OLS regression of an outcome in adulthood on test
scores measured in standard deviation units, with standard errors reported in parentheses. Means of the
dependent variable for the relevant estimation sample are shown in square brackets. The regressions are
estimated on the linked analysis sample described in section 3.3, which includes only students who would
graduate high school in or before 2008 if progressing at a normal pace. There is one observation for each
student-subject-school year, and we pool all subjects and grades in estimating these regressions. The
dependent variable is wage earnings at age 28 in column 1, an indicator for attending college at age 20 in
column 2, our earnings-based index of college quality in column 3, and an indicator for having a teenage
birth (defined for females only) in column 4. All regressions include the full vector of student- and class-level
controls used to estimate the baseline value-added model, described in the notes to Table 3. The
demographic groups are defined in exactly the same way as in Table 8. We split the sample in rows 3 and 4
based on whether a student belongs to an ethnic minority (Black or Hispanic). We split the sample in rows 5
and 6 based on whether a student’s parental income is higher or lower than median in sample, which is
$26,961. 

Heterogeneity in Cross-Sectional Correlations Across Demographic Groups



Earnings at College at College Quality Earnings at College at College Quality 
Dep. Variable: Age 28 Age 20 at Age 20 Age 28 Age 20 at Age 20

($) (%) ($) ($) (%) ($)
(1) (2) (3) (4) (5) (6)

Grade 4 7,618 18.2 5,979 3,252 6.763 2,360
(76.7) (0.053) (13.8) (157) (0.099) (25.4)

Grade 5 7,640 18.3 6,065 2,498 5.468 1,994
(61.6) (0.052) (13.6) (129) (0.096) (24.8)

Grade 6 7,395 18.0 5,917 2,103 4.987 1,778
(63.0) (0.057) (14.7) (161) (0.118) (29.8)

Grade 7 7,790 18.4 5,950 2,308 4.844 1,667
(64.6) (0.060) (15.5) (342) (0.133) (33.2)

Grade 8 7,591 18.9 6,228 2,133 5.272 1,913
(54.7) (0.055) (14.1) (196) (0.129) (32.3)

Mean of Dep Var. 20,867 37.17 24,678 20,867 37.17 24,678

Notes: Each cell reports coefficients from a separate OLS regression of an outcome in adulthood on end-of-
grade test scores measured in standard deviation units, using data from only a single grade. Standard errors
are reported in parentheses. The regressions are estimated on the linked analysis sample described in section
3.3, which includes only students who would graduate high school in or before 2008 if progressing at a normal
pace. There is one observation for each student-subject-school year. Columns 1-3 do not include any controls.
Columns 4-6 include the full vector of student- and class-level controls used to estimate the baseline value-
added model, described in the notes to Table 3. The dependent variable in columns 1 and 4 is wage earnings
at age 28. The dependent variable in columns 2 and 5 is an indicator for college attendance at age 20. The
dependent variable in columns 3 and 6 is our earnings-based index of college quality.

 APPENDIX TABLE 6
Cross-Sectional Correlations between Test Scores and Outcomes in Adulthood by Grade

No Controls With Controls



Dependent Variable: Score College at Age 20 Earnings at Age 28

(SD) (%) ($)

(1) (2) (3)

Baseline estimates 0.861 0.049 1815
Baseline s.e. (school-cohort) (0.010) (0.006) (727)

95% CI (0.841, 0.882) (0.037,0.062) (391, 3240)
95% CI using student bootstrap (0.851, 0.871) (0.040, 0.056) (630, 3095)
p value using student bootstrap <.01 <.01 <.01

1.157 0.060 1815
no clustering (0.016) (0.010) (531)

school-cohort (0.036) (0.016) (727)
two-way student and class (0.029) (0.013) (675)

Math 0.986 0.040 1258
no clustering (0.009) (0.006) (780)

school-cohort (0.017) (0.007) (862)
class (0.016) (0.007) (848)

English 1.116 0.061 2544
no clustering (0.015) (0.010) (1320)

school-cohort (0.025) (0.012) (1576)
class (0.024) (0.012) (1516)

Baseline class controls 0.858 0.049 1696
school-cohort (0.010) (0.007) (797)

Add Individual Controls 0.856 0.049 1688
school-cohort (0.010) (0.007) (792)

Add School-Year Effects 0.945 0.026 1942
school-cohort (0.009) (0.005) (669)

APPENDIX TABLE 7
Robustness Analysis: Clustering and Control Vectors

Notes: This table reports coefficient estimates, with standard errors or confidence intervals in parentheses, from OLS regressions
of various outcomes on teacher value-added. The dependent variable in column 1 is score. The dependent variable in column 2
is an indicator for college attendance at age 20. The dependent variable in column 3 is wage earnings at age 28. Panel A
reports the results from the baseline specifications estimated on the full linked analysis sample, along with a 95% confidence
interval generated from a block-bootstrap at the student level. Panel B reports results for the subsample of observations for whom
we have data on earnings at age 28. We report three sets of standard errors: no clustering, clustering by school-cohort as in our
baseline analysis, and two-way clustering by student and classroom (Cameron, Gelbach, and Miller 2011). In Panel C, we
eliminate repeated observations at the individual level by using only the first observation per student in each subject. We then
report the same three sets of standard errors. Finally, Panel D evaluates the sensitivity of the estimates to changes in the control
vector. The first and second rows of Panel D use the subsample of observations with non-missing student-level controls. The
first row uses the baseline classroom-level controls used in Table 2 and other tables, while the second adds the student-level
controls used to estimate our baseline value-added model (model 1 in Table 3). The third row uses the full analysis sample and
includes school-year fixed effects in both the estimation of teacher VA and the outcome regressions.

Panel A: Baseline Analysis Sample

Panel B: Observations with Data on Earnings at Age 28

Panel C: First observation for each child, by subject

Panel D: Additional Controls



Bottom and Jacob and
5% 4% 3% 2% 1% 0% Top 2% Levitt proxy
(1) (2) (3) (4) (5) (6) (7) (8)

Test Score 0.846 0.853 0.860 0.861 0.868 0.870 0.866 0.754
(0.011) (0.011) (0.011) (0.010) (0.010) (0.010) (0.011) (0.011)

College at Age 20 5.724 5.585 5.258 4.917 4.730 4.022 4.091 6.455
(0.693) (0.673) (0.662) (0.646) (0.622) (0.590) (0.668) (0.703)

College Quality 1,870 1,848 1,773 1,644 1,560 1,432 1,425 2,068
at Age 20 (185) (180) (177) (173) (167) (160) (177) (187)

Earnings at Age 28 2,058 2,080 1,831 1,815 1,581 994 1,719 1,672
(808) (776) (745) (729) (709) (668) (797) (834)

APPENDIX TABLE 8
Impacts of Teacher Value-Added: Sensitivity to Trimming

Percent Trimmed in Upper Tail

Notes: Each coefficient reports the coefficient on teacher VA from a separate OLS regression, with standard
errors clustered by school-cohort in parentheses. The dependent variable is end-of-grade test score in the first
row, an indicator for college attendance in the second row, our earnings-based index of college quality in the third
row, and earnings at age 28 in the fourth row. The regressions in each of these rows replicate exactly the
baseline cross-class specification used in Column 1 of Table 2, Columns 1 and 5 of Table 4, and Column 1 of
Table 5. The baseline estimates are reported in column 4, which shows the results with trimming the top 2% of
VA outliers. Columns 1-6 report results for trimming the upper tail at other cutoffs. Column 7 shows estimates
when both the bottom and top 2% of VA outliers are excluded. Finally, column 8 excludes teachers who have
more than one classroom that is an outlier according to Jacob and Levitt's (2003) proxy for cheating. Jacob and
Levitt define an outlier classroom as one that ranks in the top 5% of a test-score change metric defined in the
notes to Appendix Figure 1.



t-4 t-3 t-2 t t+1 t+2 t+3 t+4
(1) (2) (3) (5) (6) (7) (8) (9)

Teacher VA -0.059 -0.041 -0.004 0.861 0.499 0.393 0.312 0.297
(0.020) (0.015) (0.011) (0.010) (0.011) (0.012) (0.013) (0.018)

Observations 1,184,397 1,906,149 2,826,978 3,721,120 2,911,042 2,247,141 1,578,551 790,173

Notes: This table reports the values plotted in Figure 2. Each column reports coefficients from an OLS regression,
with standard errors clustered by school-cohort in parentheses. The regressions are estimated on the linked
analysis sample described in section 3.3, which includes only students who would graduate high school in or
before 2008 if progressing at a normal pace. There is one observation for each student-subject-school year.
Teacher value-added is estimated using data from classes taught by a teacher in other years, following the
procedure in Sections 2.2 and 4.1 and using the control vector in model 1 of Table 3. Each column replicates
exactly the specification in Column 1 of Table 2, replacing the dependent variable with scores in year t + s  to 
measure the impact of teacher quality in year t , where s varies from -4 to 4. We omit the specification for s = -1

since we control for lagged score.

Dependent Variable: Test Score (SD)

Impacts of Teacher Value-Added on Lagged, Current, and Future Test Scores
APPENDIX TABLE 9



Dependent Variable:

20 21 22 23 24 25 26 27 28
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Value-Added -211 -322 -211 71 449 558 1,021 1,370 1,815
(72) (100) (136) (190) (247) (319) (416) (517) (729)

Mean Earnings 4,872 6,378 8,398 11,402 13,919 16,071 17,914 19,322 20,353

Value-Added 171 165 416 731 1,053 1,405 1,637 1,728 2,073
(87) (119) (159) (215) (277) (343) (440) (546) (785)

Mean Earnings 4,747 6,183 7,785 9,752 11,486 13,064 14,319 15,249 15,967

Value-Added -592 -791 -870 -730 -318 -464 448 1,200 2,209
(110) (157) (217) (317) (417) (554) (717) (911) (1,274)

Mean Earnings 5,018 6,609 9,127 13,379 16,869 19,774 22,488 24,718 26,312

APPENDIX TABLE 10
Impacts of Teacher Value-Added on Earnings by Age

Notes: Each coefficient reports the effect of teacher VA on earnings from a separate OLS
regression, with standard errors clustered by school-cohort in parentheses. All regressions use
the specification and sample used to estimate Column 1 of Table 5, replacing the dependent
variable with earnings at the age shown in the column heading. In Panels B and C, we split the
sample into two based on the average college attendance rate at each school. The mean school-
average college attendance rate is 35%. Panel B considers schools with attendance rates below
35% while Panel C considers schools with attendance rates above 35%. The second row in each
panel reports mean earnings for the observations in the corresponding estimation sample.

Earnings ($)

Panel A: Full Sample

Panel B: Schools with Low College Attendance Rates

Panel C: Schools with High College Attendance Rates



College College
College Quality Earnings College Quality Earnings

Dependent Variable: Score at Age 20 at Age 20 at Age 28 at Age 20 at Age 20 at Age 28

Estimation Method:

(1) (2) (3) (4) (5) (6) (7)
(SD) (%) ($) ($) (%) ($) ($)

Raw Teacher Quality 0.476 2.526 837 871
(0.006) (0.349) (93) (392)

Score 5.29 1,753 1,513
(0.72) (191) (673)

Observations 3,721,120 3,095,822 3,095,822 368,427 3,089,442 3,089,442 368,427

Mean of Dep. Variable 0.162 37.8 24,815 20,912 37.8 24,815 20,912

OLS (Reduced Form) Two-Stage Least Squares

APPENDIX TABLE 11
Impacts of Teacher Quality: Instrumental Variables Specifications

Notes: This table reproduces the baseline specifications in Table 2 (Col. 1), Table 4 (Cols. 1 and 4), and Table
5 (Col 1) using raw estimates of teacher quality. Raw teacher quality is the estimate nj obtained after Step 2 of
the procedure described in Section 2.2, prior to the Empirical Bayes shrinkage correction. We define teacher
quality using student score residuals from classes taught by the same teacher in all other years available in the
school district dataset. Student score residuals are calculated from an OLS regression of scores on the full
student- and classroom-level control vector used to estimate the baseline value-added model, defined in the
notes to Table 3. Columns 1 through 4 regress the outcome on raw teacher quality with the baseline
classroom-level control vector used in Table 2. Columns 5-7 report 2SLS estimates, instrumenting for mean
classroom test scores with raw teacher quality. All regressions cluster standard errors at the school x cohort
level and are estimated on the linked analysis sample used to estimate the baseline specifications, with one
observation per student-subject-school year. For comparability to baseline estimates, observations with
teacher VA in the top 2% of the distribution (estimated using the baseline model in Table 3) are excluded.



Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

Teacher Value-Added 2,011 832 788 2,638 970
(296) (314) (363) (472) (398)

Teacher Value-Added 1,991 802 566 2,478 970

Notes: This table reports the coefficients plotted in Figure 10. Panel A replicates Column 5 of
Table 4 for each grade separately, using only cohorts who would have been in 4th grade during or
after 1994. Panel B calculates the impacts of teacher VA in each grade net of tracking to better
teachers in future grades. We obtain these point estimates by estimating the impact of VA on
future VA (see Appendix Table 13) and then subtracting out the indirect effects using the
procedure described in section 6.1.

APPENDIX TABLE 12
Impacts of Value-Added on College Quality by Grade

Panel A: Reduced-Form Coefficients

Panel B: Coefficients Net of Teacher Tracking

College Quality at Age 20



Grade 5 Grade 6 Grade 7 Grade 8

Grade 4 Teacher VA 0.001 0.012 0.005 -0.001

Grade 5 Teacher VA 0.038 0.002 0.004

Grade 6 Teacher VA 0.067 0.058

Grade 7 Teacher VA 0.165

Tracking Coefficients
APPENDIX TABLE 13

Notes: Each cell reports the coefficient from a separate regression of teacher
value-added in a subsequent grade on teacher value-added in the current grade.
All regressions include the classroom-level baseline control vector used in Table
2 and are estimated on the linked analysis sample, using all observations for
which the data needed to estimate the relevant regression are available.

Future Teacher Quality



Num. of Classes Present Value at Age 12 of Undiscounted Sum of
Observed Earnings Gain per Class Earnings Gain per Class

1 $135,228 $748,248
2 $169,865 $939,899
3 $189,247 $1,047,145
4 $201,917 $1,117,250
5 $210,923 $1,167,085
6 $217,683 $1,204,486
7 $222,955 $1,233,659
8 $227,188 $1,257,083
9 $230,665 $1,276,321

10 $233,574 $1,292,415
Max $266,664 $1,475,511

APPENDIX TABLE 14
Lifetime Earnings Impacts of Deselecting Teachers Below 5th Percentile

Notes: This table shows the earnings gains from replacing a teacher whose value-added is in the bottom 5%
of the distribution with a median teacher for a single class of average size (28.3 children). Column 1 reports
present values of earnings gains, discounted back to age 12 at a 5% rate. Column 2 reports undiscounted
sums of total earnings gains. The row labeled Max shows the gains from deselecting teachers based on
their on true VA. The other rows show the gains from deselection when VA is estimated based on a given
number of classes. The calculations are based on the average lifecycle income profile of individuals in the
U.S. population in 2007, adjusted for a 2% annual growth rate in earnings.


